How the brain builds on prior knowledge

May 12, 2014
Figure 1. Correspondence between the activity of the medial prefrontal cortex and study results in the second year versus the first year. Horizontal axis shows the degree of activity in the medial prefrontal cortex of various students; vertical axis shows performance improvement in the second academic year compared with the first.

It is easier to learn something new if you can link it to something you already know. A specific part of the brain appears to be involved in this process: the medial prefrontal cortex. The Journal of Cognitive Neuroscience has published these findings, from research by neuroscientists at Radboud university medical center and Radboud University, as an Early Access paper. The findings further enhance our understanding of the brain mechanisms that underlie effective learning.

Neuroscientist Marlieke van Kesteren tested two groups of students who had just started on their second-year of biology or pedagogy studies. While an MRI scanner was registering their activity, the students learned short sentences containing new information that expanded on their own or the other study programme. The following day, the students were tested on the information they had learned. As expected, they had retained the information that was related to their own programme better than the unrelated information.

In practice

During the successful retention of related information, a different part of the brain was active than when unrelated information was memorised. 'The brain area we found, the medial prefrontal cortex, probably linked new information directly to prior knowledge', Van Kesteren said. 'In previous studies this brain area came to the fore as well, but only during simple tests. We have specifically shown that this area also plays a role in the neural basis of learning in educational practice.'

Link to study results

To her amazement, Van Kesteren also discovered that the activity in the corresponded with how well students performed in their second year, compared with the first. So is it possible to predict a student's future academic success by placing him or her in a scanner? 'No, certainly not, the links we found were not strong enough', Van Kesteren explained. 'We're mostly talking here about differences of not more than 10% (Figure 1). What's more, we can't tell from a simple correlation like this what the chief reason is, and whether a whole lot of other factors are playing a role. But if we know exactly how our brain uses prior knowledge, we could try to address that knowledge more selectively before we start learning new information. For example, you could consider how the new is related to what you already know.'

Van Kesteren added a tip for secondary school students taking their final exams: 'If you don't immediately know the answer to a question, you could first try recalling what you already know about that topic. This might help you to come up with the right answer after all.'

Explore further: How we remember each other

More information: "Building on Prior Knowledge: Schema-dependent Encoding Processes Relate to Academic Performance." Marlieke T. R. van Kesteren, Mark Rijpkema, Dirk J. Ruiter, Richard G. M. Morris, and Guillén Fernández. Journal of Cognitive Neuroscience 0 0:0, 1-12. www.mitpressjournals.org/doi/pdf/10.1162/jocn_a_00630

Related Stories

How we remember each other

April 3, 2007

Researchers at McGill University’s Douglas Mental Health University Institute, in collaboration with a French team at the University of Paris, have used magnetic resonance imaging (MRI) to identify the part of the brain ...

Computer can read letters directly from the brain

August 19, 2013

By analysing MRI images of the brain with an elegant mathematical model, it is possible to reconstruct thoughts more accurately than ever before. In this way, researchers from Radboud University Nijmegen have succeeded in ...

Recommended for you

Special nerve cells cause goose bumps and nipple erection

August 29, 2016

The sympathetic nerve system has long been thought to respond the same regardless of the physical or emotional stimulus triggering it. However, in a new study from Karolinska Institutet published in the Nature Neuroscience, ...

A new window to understanding the brain

August 29, 2016

Scientists in recent years have made great strides in the quest to understand the brain by using implanted probes to explore how specific neural circuits work.

Next steps in understanding brain function

August 26, 2016

The most complex piece of matter in the known universe is the brain. Neuroscientists have recently taken on the challenge to understand brain function from its intricate anatomy and structure. There is no sure way to go about ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.