Learning brakes in the brain

Dendrite of an amygdala principal neuron with dendritic spines (white). Inhibitory synaptic contacts are shown in red. Credit: MPI f. Brain Research/ J. Letzkus

A brain capable of learning is important for survival: only those who learn can endure in the natural world. When it learns, the brain stores new information by changing the strength of the junctions that connect its nerve cells. This process is referred to as synaptic plasticity. Scientists at the Max-Planck Institute for Brain Research in Frankfurt, working with researchers from Basel, have demonstrated for the first time that inhibitory neurons need to be at least partly blocked during learning. This disinhibition is a bit like taking the foot off the brake in a car: if the inhibitory neurons are less active, learning is accelerated.

Learning is often a matter of timing: different stimuli become strongly associated if they occur in close succession. The Max Planck scientists made use of this phenomenon in conditioning experiments in which mice learned to react to a tone. For this learning effect to occur, the synapses of the so-called principal neurons in the amygdala need to become more sensitive. The researchers concentrated on two types of which produce the proteins parvalbumin and somatostatin and inhibit the principal neurons of the amygdala.

The results obtained by the Max Planck researchers show that both cell types are inhibited during different phases of the learning process. This disinhibition enhances the activation of the principal neurons. Moreover, the scientists were able to control the learning behaviour of the mice through the use of optogenetics. In these experiments, they equipped both types of inhibitory neurons in the amygdala with light-sensitive ion channels, allowing them to use light to switch the neurons on or off as required. "When we prevent disinhibition, the mice learn less well. In contrast, enhancing the disinhibition leads to intensified learning", says Johannes Letzkus from the Max Planck Institute for Brain Research. Next, the scientists aim to identify the nerve pathways which are involved in disinhibition.

More information: Steffen B. E. Wolff, Jan Gründemann, Philip Tovote, Sabine Krabbe, Gilad A. Jacobson, Christian Müller, Cyril Herry, Ingrid Ehrlich, Rainer W. Friedrich, Johannes J. Letzkus* and Andreas Lüthi. "Amygdala interneuron subtypes control fear learning through disinhibition." Nature; online advance publication, 11 May 2014

add to favorites email to friend print save as pdf

Related Stories

Neuroscientists pinpoint location of fear memory in amygdala

Jan 28, 2013

A rustle of undergrowth in the outback: it's a sound that might make an animal or person stop sharply and be still, in the anticipation of a predator. That "freezing" is part of the fear response, a reaction to a stimulus ...

Recommended for you

Common infections tied to some stroke risk in kids

8 hours ago

A new study suggests that colds and other minor infections may temporarily increase stroke risk in children. The study found that the risk of stroke was increased only within a three-day period between a ...

Celebrities in 'Ice Bucket Challenge' to fight disease

19 hours ago

Steven Spielberg, Justin Bieber and Bill Gates are among many celebrities pouring buckets of ice water over their heads and donating to fight Lou Gehrig's disease, in a fundraising effort that has gone viral.

Study helps explain why elderly have trouble sleeping

20 hours ago

As people grow older, they often have difficulty falling asleep and staying asleep, and tend to awaken too early in the morning. In individuals with Alzheimer's disease, this common and troubling symptom ...

Targeted brain training may help you multitask better

22 hours ago

The area of the brain involved in multitasking and ways to train it have been identified by a research team at the IUGM Institut universitaire de gériatrie de Montréal and the University of Montreal.

User comments

Adjust slider to filter visible comments by rank

Display comments: newest first

russell_russell
not rated yet May 22, 2014
http://medicalxpr...ain.html

The brain stores new information from repair of damage. See above link. What then follows is described by the research from the authors are reported here.

You can not learn 'well' or 'badly'. You can only learn what is not consistent.