Better cognition seen with gene variant carried by one in five

Credit: zaldy icaonapo/Public Domain

A scientific team led by the Gladstone Institutes and UC San Francisco has discovered that a common form of a gene already associated with long life also improves learning and memory, a finding that could have implications for treating age-related diseases like Alzheimer's.

The researchers found that people who carry a single copy of the KL-VS variant of the KLOTHO gene perform better on a wide variety of cognitive tests. When the researchers modeled the effects in , they found it strengthened the connections between neurons that make learning possible – what is known as – by increasing the action of a cell receptor critical to forming memories.

The discovery is a major step toward understanding how genes improve cognitive ability and could open a new route to treating diseases like Alzheimer's. Researchers have long suspected that some people may be protected from the disease because of their greater cognitive capacity, or reserve. Since elevated levels of the klotho protein appear to improve cognition throughout the lifespan, raising klotho levels could build cognitive reserve as a bulwark against the disease.

"As the world's population ages, cognitive frailty is our biggest biomedical challenge," said Dena Dubal, MD, PhD, assistant professor of neurology, the David A. Coulter Endowed Chair in Aging and Neurodegeneration at UCSF and lead author of the study, published May 8 in Cell Reports. "If we can understand how to enhance brain function, it would have a huge impact on people's lives."

Klotho was discovered in 1997 and named after the Fate from Greek mythology who spins the thread of life. The investigators found that people who carry a single copy of the KL-VS variant of the KLOTHO gene, roughly 20 percent of the population, have more klotho protein in their blood than non-carriers. Besides increasing the secretion of klotho, the KL-VS variant may also change the action of the protein and is known to lessen age-related and promote longevity.

The team's report is the first to link the KL-VS variant, or allele, to better cognition in humans, and buttresses these findings with genetic, electrophysiological, biochemical and behavioral experiments in mice. The researchers tested the associations between the allele and age-related human cognition in three separate studies involving more than 700 people without dementia between the ages of 52 and 85. Altogether, it took about three years to conduct the work.

"These surprising results pave a promising new avenue of research," said Roderick Corriveau, Ph.D., program director at NIH's National Institute of Neurological Disorders and Stroke (NINDS). "Although preliminary, they suggest klotho could be used to bump up cognition for people suffering from dementia."

Having the KL-VS allele did not seem to protect people from age-related cognitive decline. But overall the effect was to boost cognition, so that the middle-aged study participants began their decline from a higher point.

"Based on what was known about klotho, we expected it to affect the brain by changing the aging process," said senior author Lennart Mucke, MD, who directs neurological research at the Gladstone Institutes and is a professor of neurology and the Joseph B. Martin Distinguished Professor of Neuroscience at UCSF. "But this is not what we found, which suggested to us that we were on to something new and different."

To get a closer look at how the gene variant operates, the researchers used mice that were engineered to produce more of the mouse version of klotho and found that these mice learned better at all stages of life. Put through mazes, these transgenic mice were more likely to try different routes, an indication that they had superior working memory. In a test of spatial learning and memory, the mice with extra klotho performed twice as well.

Researchers then analyzed the mouse brain tissue and found that the mice with elevated klotho had twice as many GluN2B subunits within synaptic connections. GluN2B is part of the N-methyl-D-aspartate receptor, or NMDAR, a key receptor involved in synaptic plasticity.

The researchers found more GluN2B-containing receptors in the hippocampus and frontal cortex, brain regions that support cognitive functions. When the researchers gave the mice a drug that blocks the action of these receptors, the klotho-enhanced mice lost their cognitive advantage.

More information: Cell Reports, Dubal et al.: "Life extension factor klotho enhances cognition." http://www.cell.com/cell-reports/abstract/S2211-1247(14)00287-3

add to favorites email to friend print save as pdf

Related Stories

A new treatment for kidney disease-associated heart failure?

Jan 09, 2013

Chronic kidney disease (CKD) patients frequently suffer from mineral bone disorder, which causes vascular calcification and, eventually, chronic heart failure. Similar to patients with CKD, mice with low levels of the protein ...

Recommended for you

Science of romantic relationships includes gene factor

Nov 23, 2014

(Medical Xpress)—Adolescents worry about passing tests, winning games, lost phones, fractured bones—and whether or not they will ever really fall in love. Three Chinese researchers have focused on that ...

Stress reaction may be in your dad's DNA, study finds

Nov 21, 2014

Stress in this generation could mean resilience in the next, a new study suggests. Male mice subjected to unpredictable stressors produced offspring that showed more flexible coping strategies when under ...

More genetic clues found in a severe food allergy

Nov 21, 2014

Scientists have identified four new genes associated with the severe food allergy eosinophilic esophagitis (EoE). Because the genes appear to have roles in other allergic diseases and in inflammation, the ...

Brain-dwelling worm in UK man's head sequenced

Nov 20, 2014

For the first time, the genome of a rarely seen tapeworm has been sequenced. The genetic information of this invasive parasite, which lived for four years in a UK resident's brain, offers new opportunities ...

User comments

Adjust slider to filter visible comments by rank

Display comments: newest first

DonaldJLucas
not rated yet May 11, 2014
Other articles show that KLOTHO expresses a protein in tubules in the kidney that then improves memory and learning. Does this mean that if you lack the KL-VS variant and receive a kidney transplant from someone who does possess the KL-VS variant, that you will start overexpressing this protein as well and experience cognitive improvement? That could lead to a number of unintended, but interesting life changing outcomes and maybe a movie or two ;-)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.