Novel drug target linked to insulin secretion and type 2 diabetes treatment

May 26, 2014

A signal that promotes insulin secretion and reduces hyperglycemia in a type 2 diabetes animal model is enhanced by the inhibition of a novel enzyme discovered by CHUM Research Centre (CRCHUM) and University of Montreal researchers. The team is part of the Montreal Diabetes Research Center and their study, published recently in Cell Metabolism, was directed by researchers Marc Prentki and Murthy Madiraju.

Insulin is an important hormone in our body that controls glucose and fat utilization. Insufficient by the beta-cells of the pancreas and interference with the action of lead to type 2 diabetes. The secretion in the blood of insulin is dependent upon the utilization of glucose and fat by the beta-cells and the production of a novel signal that they discovered named monoacylglycerol.

"Despite significant research on the mechanisms implicated in insulin secretion, the signal molecules involved in this process remained enigmatic; the identification of these signals is necessary to develop better therapeutics against diabetes," explains Marc Prentki, Director of the Montreal Diabetes Research Centre and Professor at the University of Montreal. Marc Prentki holds the Canada Research Chair in Diabetes and Metabolism.

"When sugar is being used by the insulin secreting pancreatic beta-cell, it produces monoacylglycerol, a fat-like signal and this is associated with insulin release into blood; we found that the production of monoacylglycerol is essential for glucose-stimulated by the beta-cell," says Murthy Madiraju, Researcher at the CRCHUM.

Importantly, the research team discovered that an enzyme called alpha/beta hydrolase domain-6 (in short ABHD6) breaks down monoacylglycerol and thus negatively controls insulin release. These researchers said that "an ideal drug for type-2 diabetes would increase in blood by enhancing the beta cells response to glucose only when it is elevated and also increase the sensitivity of body tissues to insulin; this is precisely what ABHD6 inhibition does and thus we have identified a unique new target for type 2 diabetes."

The research team is currently in the process of discovering new and potent blockers of ABHD6 that do not show any unwanted toxicity and which can be developed as potential drugs for type 2 . These studies are being done in collaboration with AmorChem Financial, Inc., and its subsidiary NuChem Therapeutics, Montreal.

Explore further: New mechanism regulating insulin secretion may explain genetic susceptibility to diabetes

More information: Paper: http://www.cell.com/cell-metabolism/abstract/S1550-4131(14)00166-1

Related Stories

Insulin secretion disrupted by increased fatty acids

September 9, 2013

Patients with type 2 diabetes have increased levels of circulating glucose and fatty acids, which lead to disease complications. In healthy individuals, β cells within pancreatic islets release insulin in response to glucose ...

How fat could help solve part of the diabetes problem

October 29, 2013

The pancreas is a large organ that wraps around our gut, and produces the exact amount of insulin our bodies need when we eat – except when we start to develop diabetes, and insulin production slows down. Sydney scientists ...

Loss of function of a single gene linked to diabetes in mice

January 4, 2014

Researchers from the University of Illinois at Chicago College of Medicine have found that dysfunction in a single gene in mice causes fasting hyperglycemia, one of the major symptoms of type 2 diabetes. Their findings were ...

Researchers find new pathway connected to type 2 diabetes

March 19, 2014

Scientists at the Children's Hospital of Eastern Ontario (CHEO) Research Institute have discovered a cellular pathway that is responsible for keeping blood sugar levels low in obese or pre-diabetic people, and may prevent ...

Recommended for you

New study reveals a novel protein linked to type 2 diabetes

August 16, 2016

Findings from Boston University School of Medicine (BUSM), which appear in eLife, provide a possible explanation as to why most people who are obese develop insulin resistance and type 2 diabetes. A minority of obese individuals, ...

Gene variant explains differences in diabetes drug response

August 9, 2016

The first results from a large international study of patients taking metformin, the world's most commonly used type 2 diabetes drug, reveal genetic differences among patients that may explain why some respond much better ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.