New genes identified may unlock mystery of keloid development

May 29, 2014

Researchers at Henry Ford Hospital in Detroit have uncovered previously unidentified genes that may be responsible for keloid scarring, a discovery that could unlock the mystery of keloid development and provide insight for more effective treatment.

"Much of the uncertainty surrounding keloids is rooted in there being no known cause for their development," says study lead author Lamont R. Jones, M.D., vice chair, Department of Otolaryngology-Head and Neck Surgery at Henry Ford.

"But it is believed that keloids have a genetic component given the correlation with family history, prevalence in twins, and its predisposition in darker skin."

Results from the study were presented this week at the American Academy of Facial Plastic and Reconstructive Surgery's 11th International Symposium in New York City.

Keloid scars form raised, firm skin areas that may become itchy, tender, and painful. Unlike regular scars, keloids do not subside over time and often extend outside the wound site.

Keloids most often occur on the chest, shoulders, earlobes (following ear piercing), upper arms and cheeks. The lowest rates of keloid formation have been documented in albinos and the highest seen in dark skinned individuals, especially in the African-American population.

Treatment for keloids includes cortisone injections, pressure dressings, silicone gels, surgery, cryosurgery (freezing), , or radiation therapy. A combination of treatments may be used, depending on the individual.

In some cases, keloids return after treatment, up to 50 to 100 percent of the time.

For the Henry Ford study, Dr. Jones and his colleagues used six fresh keloid samples and six fresh normal skin samples in which genome-wide profiling was previously done. This effort identified 190 statistically significant regions of DNA that were mapped to 152 keloid specific genes.

The 152 genes were uploaded into the Ingenuity Pathway Analysis software, which integrates genes and molecules that are part of the same biological functions or regulatory networks interacting together.

Among 152 unique genes, the researchers found 10 genes that demonstrated an increase of the cellular components and regulatory pathways important to the biological processes in keloid development.

In all, the researchers were able to show that certain keloid genomes are present in known bionetwork pathways involved in critical biological functioning and signaling events in the cell.

Dr. Jones notes the importance of this new information and how it can be used to "further refine the screening process for biological significance in hopes of better understanding the pathogenesis and molecular targeted therapy for keloid disease."

"By identifying the genetic cause, it may be possible to develop better treatments for keloids in the near future," he says.

Explore further: Study finds 231 new genes associated with head and neck cancer

Related Stories

Study links 23 microRNAs to laryngeal cancer

September 13, 2011

A Henry Ford Hospital study has identified 23 microRNAs for laryngeal cancer, a discovery that could yield new insight into what causes certain cells to grow and become cancerous tumors in the voice box.

Lasers deemed highly effective treatment for excessive scars

November 27, 2013

Current laser therapy approaches are effective for treating excessive scars resulting from abnormal wound healing, concludes a special topic paper in the December issue of Plastic and Reconstructive Surgery, the official ...

Recommended for you

Face shape is in the genes

August 25, 2016

Many of the characteristics that make up a person's face, such as nose size and face width, stem from specific genetic variations, reports John Shaffer of the University of Pittsburgh in Pennsylvania, and colleagues, in a ...

Researchers discover otulipenia, a new inflammatory disease

August 22, 2016

National Institutes of Health researchers have discovered a rare and sometimes lethal inflammatory disease - otulipenia - that primarily affects young children. They have also identified anti-inflammatory treatments that ...

Solving the mystery of meningiomas reveals a surprise twist

August 23, 2016

In solving one mystery—the genetic roots of benign brain tumors called meningiomas—a team of scientists led by Yale researchers stumbled upon an even greater one: How is it possible that two of the mutations linked to ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.