Genetic risk factor for premature birth found

Genetic risk factor for premature birth found
Group B Streptococcus bacteria (green) are shown binding to siglec proteins (red) that densely cover the surface of human immune cells (human cell nuclei in blue). Credit: UC San Diego School of Medicine

Researchers at the University of California, San Diego School of Medicine have discovered a genetic risk factor for premature birth. The risk factor is related to a gene that codes for a protein that the scientists have found helps the body's immune cells recognize and fight Group B Streptococcus (GBS) bacteria.

These bacteria are found in the vagina or of approximately 15 to 20 percent of healthy women, but may cause life-threatening infections, such as sepsis or meningitis in newborns, especially those born prematurely.

The study is published online in the May 5, 2014 issue of the Journal of Experimental Medicine.

"Pregnant women are universally screened for these bacteria during pregnancy and administered antibiotics intravenously during labor if they test positive to protect the infant from infection," said Victor Nizet, MD, professor of pediatrics and pharmacy and co-author. "Our research may explain why some women and their infants are at higher risk of acquiring severe GBS infections than others."

In the study, scientists identified two proteins on of the placenta that are involved in immune function. One of the proteins (known as Siglec-5) binds to the GBS pathogen and suppresses immune response to the microbe, while the other protein (known as Siglec-14) binds to the pathogen, and activates killing of the bacteria. Siglecs are found typically on . They recognize (bind) sialic acids - sugar molecules that densely coat our cells.

"We have one protein that tells the body to attack the pathogen and another that tells the body not to attack it," said Raza Ali, PhD, a project scientist in the Nizet laboratory and the study's lead author.

Scientists believe that the pair of proteins together helps balance the body's immune response to pathogens, by directing some antimicrobial response without provoking excessive inflammation.

"Identifying the dual role of these receptors and how they are regulated may provide insight for future treatments against GBS," Ali said.

Interestingly, the gene for Siglec-14 is missing in some individuals, and the researchers have found that fetuses that lack the Siglec-14 protein are at higher risk of , likely due to an imbalanced to the bacterial infection.

"We found this association in GBS-positive but not GBS-negative pregnancies, highlighting the importance of GBS-siglec crosstalk on placental membranes," said Ajit Varki, MD, Distinguished Professor of Medicine and Cellular and Molecular Medicine and study co-author.

For reasons not completely understood, GBS infections are not found in any other animals, including chimpanzees, which share 99 percent of human protein sequences. "The expression of the two siglec proteins on the fetal membranes is also unique to humans," Varki said. "Our study offers intriguing insights into why certain bacterial pathogens may produce uniquely human diseases."

The scientists believe that identifying the mechanisms of siglec protein action may help in designing therapeutic targets against bacterial infections that are becoming increasingly resistant to antibiotics and could have important implications for other disorders, such as blood clotting, chronic diseases and HIV infections.

add to favorites email to friend print save as pdf

Related Stories

More accurate diagnostic test may reduce deaths

Jun 26, 2012

A more accurate, faster diagnostic test for Group B Streptococcal infection in babies has been reported in the Journal of Medical Microbiology. The new test could allow better treatment and management of the disease and re ...

Recommended for you

Changes in scores of genes contribute to autism risk

Oct 29, 2014

Small differences in as many as a thousand genes contribute to risk for autism, according to a study led by Mount Sinai researchers and the Autism Sequencing Consortium (ASC), and published today in the journal Nature.

Dozens of genes associated with autism in new research

Oct 29, 2014

Two major genetic studies of autism, led in part by UC San Francisco scientists and involving more than 50 laboratories worldwide, have newly implicated dozens of genes in the disorder. The research shows ...

Genetic link to kidney stones identified

Oct 29, 2014

A new breakthrough could help kidney stone sufferers get an exact diagnosis and specific treatment after genetic links to the condition were identified.

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.