Researchers restore grasp ability in paralyzed hand

May 20, 2014

(Medical Xpress)—For the first time scientists have been able to restore the ability to grasp with a paralysed hand using spinal cord stimulation.

There is currently no cure for upper limb paralysis, where there has been damage to the nerves which send messages to the muscles from the brain, such as happens after a stroke or .

But now Wellcome Trust-funded researchers at Newcastle University, working with macaque monkeys, have shown that by connecting the brain to a computer and then the computer to the , it is possible to restore movement. The discovery opens up the possibility of new treatments within the next few years which could help stroke victims or those with regain some movement in their arms and hands.

Spinal cord stimulation

The team first trained the primates to grasp and pull a spring-loaded handle. The monkeys were then temporarily paralysed, using a drug that wore off after about two hours. During that time the monkey had no movement in their hand and was unable to grasp, even though most of the brain was functioning normally. But when the stimulation circuit was switched on the monkey was able to control its own arm and pull the handle.

The work is published today in the journal Frontiers in Neuroscience. A video shows the technique in action.

This video is not supported by your browser at this time.

Dr Andrew Jackson, Research Fellow at Newcastle University and Dr Jonas Zimmermann, now at Brown University, Providence, Rhode Island, USA, led the research.

Dr Jackson said: "When someone has a damaged motor cortex or spinal cord the problem is that the signal from the brain to the muscles isn't getting through. What we have done here is restore that connection, to allow the signal telling the hand to move to reach the spinal cord. By exploiting surviving neural networks below the injury, we can activate natural actions like grasping using just a few stimulation sites. This is the first time that anyone has done that."

The next stage will be to further develop the technology to eventually have a small implant for use in patients that can then form the link between the brain and the muscles.

Restoring hand movement

Dr Jackson added: "Much of the technology we used for this is already being used separately in patients today, and has been proven to work. We just needed to bring it all together.

"I think within five years we could have an implant which is ready for people. And what is exciting about this technology is that it would not just be useful for people with spinal injuries but also people who have suffered from a stroke and have impaired movement due to that. There are some technical challenges which we have to overcome, as there is with any new technology, but we are making good progress."

Dr Zimmermann said: "Animal studies such as ours are necessary to demonstrate the feasibility and safety of procedures before they can be tried in human patients, to minimise risk and maximise chance of successful outcomes."

Dr John Williams, Head of Neuroscience and Mental Health at the Wellcome Trust said: "Being able to restore dexterous hand movements to patients paralysed by stroke or spinal cord injury would be a huge improvement to their independence and quality of life. The Newcastle University team's research, which harnesses the intact portions of the nervous system and creates new artificial connections, is at the cutting edge of neuro and rehabilitation science. When used alone or in combination with other rehabilitation approaches, this technique could lead to significant improvements in hand function and transform the lives of paralysed patients."

More information: Zimmermann JB and Jackson A (2014) "Closed-loop control of spinal cord stimulation to restore hand function after paralysis." Front. Neurosci. 8:87. DOI: 10.3389/fnins.2014.00087

Related Stories

Isolating the circuits that control voluntary movement

May 7, 2014

(Medical Xpress)—Extraordinarily complex networks of circuits that transmit signals from the brain to the spinal cord control voluntary movements. Researchers have been challenged to identify the controlling circuits, but ...

Hope for paraplegic patients

May 16, 2014

People with severe injuries to their spinal cord currently have no prospect of recovery and remain confined to their wheelchairs. Now, all that could change with a new treatment that stimulates the spinal cord using electric ...

Recommended for you

Research grasps how the brain plans gripping motion

July 28, 2015

With the results of a new study, neuroscientists have a firmer grasp on the way the brain formulates commands for the hand to grip an object. The advance could lead to improvements in future brain-computer interfaces that ...

New research rethinks how we grab and hold onto objects

July 28, 2015

It's been a long day. You open your fridge and grab a nice, cold beer. A pretty simple task, right? Wrong. While you're debating between an IPA and a lager, your nervous system is calculating a complex problem: how hard to ...

It don't mean a thing if the brain ain't got that swing

July 27, 2015

Like Duke Ellington's 1931 jazz standard, the human brain improvises while its rhythm section keeps up a steady beat. But when it comes to taking on intellectually challenging tasks, groups of neurons tune in to one another ...

Static synapses on a moving structure: Mind the gap!

July 22, 2015

In biology, stability is important. From body temperature to blood pressure and sugar levels, our body ensures that these remain within reasonable limits and do not reach potentially damaging extremes. Neurons in the brain ...

Sleep makes our memories more accessible, study shows

July 27, 2015

Sleeping not only protects memories from being forgotten, it also makes them easier to access, according to new research from the University of Exeter and the Basque Centre for Cognition, Brain and Language. The findings ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.