Improved identification of war wound infections promises more successful treatment

May 29, 2014

War wounds that heal successfully frequently contain different microbial species from those that heal poorly, according to a paper published ahead of print in the Journal of Clinical Microbiology. These and other findings have important implications for improving wound healing, says first author Nicholas Be of Lawrence Livermore National Laboratory, Livermore, California.

The problem the researchers were addressing is that culture-based identification, which has been used to assay war , misses the many species that are difficult or impossible to culture. But Be and his collaborators posited that using microarrays and whole to detect in wound samples would reveal infections caused by microbes that cannot be cultured, as these molecular methods can detect all species for which reference DNA is available.

"We also hypothesized that different microorganisms could be associated with successful or unsuccessful healing, and we felt that this information could be used for guiding medical treatment," says Be.

In the study, the investigators found that genetic sequences from certain bacteria, including Pseudomonas species and Acinetobacter baumannii, were frequently observed in that failed to heal, while bacteria typically associated with the gastrointestinal system, such as E. coli and Bacteroides species, were found in wounds that did heal successfully.

"This surprising finding further emphasizes the need for specific molecular detection," says Be. "We also observed via whole genome sequencing that the complex microbial populations present in wounds vary between patients and change over time in a single patient, further emphasizing the need for personalized treatment of individual wounds."

The investigators examined 124 wound samples from 61 wounds in 44 patients injured in combat in Iraq and Afghanistan. They used a microbial detection microarray developed at Lawrence Livermore National Laboratory, which contains DNA probes capable of detecting any microorganisms that have previously been sequenced.

"This represents a cost-effective, high-throughput platform for analysis of wound infections," says Be. A subset of samples was also subjected to whole genome sequencing.

"Information on the presence of specific bacteria that more significantly affect the success of the healing response could guide therapy and allow for more accurate prediction of outcome," says Be. "More effective, specific, and timely diagnosis of infection would improve treatment, accelerate rehabilitation, and decrease the length of hospital stays."

The manuscript can be found online. The final version of the article is scheduled for the July 2014 issue of the Journal of Clinical Microbiology.

Explore further: Bacteria on the skin: New insights on our invisible companions

Related Stories

Researchers explain why some wound infections become chronic

December 17, 2013

Chronic wounds affect an estimated 6.5 million Americans at an annual cost of about $25 billion. Further, foot blisters and other diabetic ulcers or sores account for the vast majority of foot and leg amputations in the United ...

Promising role for interleukin-10 in scarless wound healing

May 8, 2014

The powerful anti-inflammatory compound interleukin-10 (IL-10) plays a crucial role in regenerative, scarless healing of fetal skin. Studies of IL-10 in postnatal skin wounds have demonstrated its promise as an anti-scarring ...

Recommended for you

Artificial beta cells

December 8, 2016

Researchers led by ETH Professor Martin Fussenegger at the Department of Biosystems Science and Engineering (D-BSSE) in Basel have produced artificial beta cells using a straightforward engineering approach.

Key regulator of bone development identified

December 8, 2016

Loss of a key protein leads to defects in skeletal development including reduced bone density and a shortening of the fingers and toes—a condition known as brachydactyly. The discovery was made by researchers at Penn State ...

Researchers question lifelong immunity to toxoplasmosis

December 8, 2016

Medical students are taught that once infected with Toxoplasma gondii—the "cat parasite"—then you're protected from reinfection for the rest of your life. This dogma should be questioned, argue researchers in an Opinion ...

TET proteins drive early neurogenesis

December 7, 2016

The fate of stem cells is determined by series of choices that sequentially narrow their available options until stem cells' offspring have found their station and purpose in the body. Their decisions are guided in part by ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.