New design of a system that 'interrogates' and shows how the brain relearns

May 28, 2014
New design of a system that

Monitoring the rehabilitation of patients with neurological damage caused by a stroke, has encouraged Mexican scientists to work in the design and manufacture of a functional infrared spectroscopy (fNIRS -FD) instrument capable of identifying the affected areas of the brain and the sites that were activated while analyzing the oxygen content in blood flow during therapy.

"It's a device consisting of a headband or helmet equipped with emitters and light detectors, oximeter (to measures oxygen levels), a monitor and software. Its operation is based on , which passes through the scalp to the skull leather and displays and "interrogates" in order to obtain information on cell metabolism, alterations in and amount of oxygen," explains Carlos Gerardo Treviño Palacios, researcher at the National Institute of Astrophysics, Optics and Electronics (INAOE) in Mexico.

He highlights that so far they are ending the development of an oximeter and software to display images. Also, they analyze information that will be provided to the base hardware and detectors, and work in the construction helmet. This will not only help rehabilitate patients, but will create a map of the brain to detect which parts are replacing areas that died in the motor cortex after stroke and watch how the body relearns with the help of rehabilitation.

"The aim is to build a non-invasive imaging system to avoid secluding the patient into a box camera during the shooting of brain "photography" with the limitations of the procedure , as happens with an MRI," says Treviño Palacios.

He notes that although the latter method also measures the concentration of oxygen, despite having a lower resolution does not require the patient to lie still and requires only the use of a helmet, allowing the physician to observe brain activity and progress while continuing the patient's rehabilitation therapy. Additional advantages are system portability and low cost.

"In parallel, we are looking for a fast optical signal, ie, a series of changes that occur a few milliseconds before the neuron is active in the images, which shows the action potential of the nerve cell," says the researcher at INAOE.

This project is jointly implemented by INAOE and the National Institute of Neurology and Neurosurgery of the Mexican Ministry of Health, where collaboration comes naturally to raise an investigation into an imaging modality based on the interaction of light with matter, after a previous collaboration where a system was developed.

"The particular characteristics of the optical imaging system make it a unique tool in certain problems where the in-vivo and in- situ neuroimaging is required noninvasively and continuously for long periods of time. This is the case of the study of brain plasticity in patients going through motor rehabilitation, which should be monitored while practicing neuro-rehabilitation exercises during therapy sessions that can last from 45 minutes to an hour," says  Treviño Palacios.

Explore further: Novel rehabilitation device improves motor skills after stroke

Related Stories

Real-time insight into our brain

March 4, 2014

Combining two imagine technologies, such as MRI for structure and MEG for activity, could provide a new understanding of our how our brain works.

Brainstem discovered as important relay site after stroke

February 25, 2014

Around 16,000 people in Switzerland suffer a stroke every year. Often the result of a sudden occlusion of a vessel supplying the brain, it is the most frequent live-threatening neurological disorder. In most cases, it has ...

Recommended for you

Neuro chip records brain cell activity

October 26, 2016

Brain functions are controlled by millions of brain cells. However, in order to understand how the brain controls functions, such as simple reflexes or learning and memory, we must be able to record the activity of large ...

Can a brain-computer interface convert your thoughts to text?

October 25, 2016

Ever wonder what it would be like if a device could decode your thoughts into actual speech or written words? While this might enhance the capabilities of already existing speech interfaces with devices, it could be a potential ...

The current state of psychobiotics

October 25, 2016

Now that we know that gut bacteria can speak to the brain—in ways that affect our mood, our appetite, and even our circadian rhythms—the next challenge for scientists is to control this communication. The science of psychobiotics, ...

After blindness, the adult brain can learn to see again

October 25, 2016

More than 40 million people worldwide are blind, and many of them reach this condition after many years of slow and progressive retinal degeneration. The development of sophisticated prostheses or new light-responsive elements, ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.