Isolating the circuits that control voluntary movement

May 7, 2014 by Sophie Davis

(Medical Xpress)—Extraordinarily complex networks of circuits that transmit signals from the brain to the spinal cord control voluntary movements. Researchers have been challenged to identify the controlling circuits, but they lacked the tools needed to dissect, at the neural level, the way the brain produces voluntary movements.

Recently, Dr. John Martin, medical professor in City College's Sophie Davis School of Biomedical Education, postdoctoral fellow Dr. Najet Serradi and other colleagues employed a sensitive genetic technique that eliminated a particular gene in the cerebral cortex and, in the process, changed the circuitry.

The team hypothesized that the corticospinal tract, which stretches from cerebral cortex to the spinal cord, is important for voluntary reaching movements, but not for more routine and stereotypic walking movements. "We reasoned that if we genetically altered the corticospinal tract we would affect voluntary reaching movements, but not walking." Professor Martin said.

In genetically intact mice, corticospinal tract signals are transmitted from one side of the cerebral cortex to the opposite side of the spinal cord. Such mice reach with one arm, or the other – but not both arms together.

Professor Martin and colleagues used specially bred mice, i.e. knockout mice, with the gene EphA4 removed from the cerebral cortex. These mice reached with both forelimbs together, rather than with one. This happened because the genetic manipulation changed the circuit; it caused the signal to move to be transmitted from one side of the cerebral cortex to both sides of the spinal cord.

However, their stereotypic walking was unaffected. Professor Martin said this shows that while voluntary movements depend on the corticospinal tract walking depends on circuits in other parts of the brain and spinal cord, which are not affected by the gene manipulation.

The findings, he added, "etch away at the vexing problem of achieving a deeper understanding of how the brain functions in voluntary movement." In addition greater knowledge of how voluntary circuits function could lead to new understanding of cerebral palsy, a condition in which the corticospinal tract is injured around the time of birth and people often make "mirror movements" of both arms when they intend to move only one, he said.

The research, which is funded by the National Institute of Neurological Diseases and Stroke, aims to understand the brain and spinal cord circuits for voluntary movement. Using similar genetic tools, his team hopes to further dissect the connections and functions of the corticospinal tract movement circuits in ways to restore movements after brain or spinal cord injury.

The findings were published April 9 in the Journal of Neuroscience.

Explore further: Hand use improved after spinal cord injury with noninvasive stimulation

More information: Paper:

Related Stories

Brainstem discovered as important relay site after stroke

February 25, 2014

Around 16,000 people in Switzerland suffer a stroke every year. Often the result of a sudden occlusion of a vessel supplying the brain, it is the most frequent live-threatening neurological disorder. In most cases, it has ...

Scientists reveal circuitry of fundamental motor circuit

May 2, 2014

Scientists at the Salk Institute have discovered the developmental source for a key type of neuron that allows animals to walk, a finding that could help pave the way for new therapies for spinal cord injuries or other motor ...

Recommended for you

New insights on how cocaine changes the brain

November 25, 2015

The burst of energy and hyperactivity that comes with a cocaine high is a rather accurate reflection of what's going on in the brain of its users, finds a study published November 25 in Cell Reports. Through experiments conducted ...

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.