Researchers identify changes that may occur in neural circuits due to addiction

brain

A research team from the Friedman Brain Institute of the Icahn School of Medicine at Mount Sinai has published evidence that shows that subtle changes of inhibitory signaling in the reward pathway can change how animals respond to drugs such as cocaine. This is the first study to demonstrate the critical links between the levels of the trafficking protein, the potassium channels' effect on neuronal activity and a mouse's response to cocaine. Results from the study are published in the peer-reviewed journal Neuron on May 7, 2014.

The authors investigated the role of sorting nexin 27 (SNX27), a PDZ-containing protein known to bind GIRK2c/GIRK3 channels, in regulating GIRK currents in dopamine (DA) neurons on the (VTA) in mice.

"Our results identified a pathway for regulating the excitability of the VTA DA neurons, highlighting SNX27 as a promising target for treating addiction," said Paul A. Slesinger, PhD, Professor, Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai.

"Future research will focus on the role that and trafficking proteins have in models of addiction," said Dr. Slesinger.

Dr. Slesinger was the lead author of the study and joined by Michaelanne B. Munoz from the Graduate Program in Biology, University of California, San Diego and the Peptide Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, California.

Related Stories

Morphine and cocaine affect reward sensation differently

date Oct 05, 2012

(Medical Xpress)—A new study by scientists in the US has found that the opiate morphine and the stimulant cocaine act on the reward centers in the brain in different ways, contradicting previous theories ...

Recommended for you

Making waves with groundbreaking brain research

date Jul 03, 2015

New research by Jason Gallivan and Randy Flanagan suggests that when deciding which of several possible actions to perform, the human brain plans multiple actions simultaneously prior to selecting one of ...

Long-term memories are maintained by prion-like proteins

date Jul 02, 2015

Research from Eric Kandel's lab at Columbia University Medical Center (CUMC) has uncovered further evidence of a system in the brain that persistently maintains memories for long periods of time. And paradoxically, ...

Water to understand the brain

date Jul 02, 2015

To observe the brain in action, scientists and physicians use imaging techniques, among which functional magnetic resonance imaging (fMRI) is the best known. These techniques are not based on direct observations ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.