Neurons can use local stores for communication needs

May 26, 2014
Neurons can use local stores for communication needs
The localization of ryanodine receptors (red) in an isolated nerve terminal from the posterior pituitary gland is depicted in this image. Credit: McNally et al., 2014

Researchers reveal that neurons can utilize a supremely localized internal store of calcium to initiate the secretion of neuropeptides, one class of signaling molecules through which neurons communicate with each other and with other cells. The study appears in The Journal of General Physiology.

Neuropeptides are released from through a process that—like other secretory events—is triggered primarily by the influx of calcium into the neuron through voltage-gated channels. Although neuropeptides are stored in large dense core vesicles (LDCVs) that also contain large amounts of calcium, it has been unclear whether these locally based calcium supplies can also be used to modulate .

A team of researchers led by José Lemos from the University of Massachusetts Medical School examined the mechanisms at play during secretion of vasopressin from in the posterior pituitary gland, which releases the into the blood so that it can make its way to the kidney and regulate water retention. The researchers found that certain intracellular calcium channels known as ryanodine receptors are likely responsible for mobilizing calcium from LDCVs to facilitate vasopressin release.

The findings indicate that neurons have a greater capacity than previously appreciated to fine-tune the release of neuropeptides and thereby their communications with other cells.

Explore further: New methods to explore astrocyte effects on brain function

More information: Paper: McNally, J.M., et al. 2014. J. Gen. Physiol. DOI: 10.1085/jgp.201311110

Related Stories

New methods to explore astrocyte effects on brain function

April 29, 2013

A study in The Journal of General Physiology presents new methods to evaluate how astrocytes contribute to brain function, paving the way for future exploration of these important brain cells at unprecedented levels of detail.

Researchers identify how cells control calcium influx

May 9, 2013

(Medical Xpress)—When brain cells are overwhelmed by an influx of too many calcium molecules, they shut down the channels through which these molecules enter the cells. Until now, the "stop" signal mechanism that cells ...

Loose coupling between calcium channels and sensors

February 6, 2014

In research published in this week's online edition of Science, postdoc Nicholas Vyleta and Professor Peter Jonas of the Institute of Science and Technology Austria uncover the existence of loose coupling between calcium ...

Recommended for you

New mechanism discovered behind infant epilepsy

September 3, 2015

Scientists at Karolinska Institutet and Karolinska University Hospital in Sweden have discovered a new explanation for severe early infant epilepsy. Mutations in the gene encoding the protein KCC2 can cause the disease, hereby ...

Neuron responsible for alcoholism found

September 2, 2015

Scientists have pinpointed a population of neurons in the brain that influences whether one drink leads to two, which could ultimately lead to a cure for alcoholism and other addictions.

Deciphering the olfactory receptor code

August 31, 2015

In animals, numerous behaviors are governed by the olfactory perception of their surrounding world. Whether originating in the nose of a mammal or the antennas of an insect, perception results from the combined activation ...

Scientists see motor neurons 'walking' in real time

September 2, 2015

When you're taking a walk around the block, your body is mostly on autopilot—you don't have to consciously think about alternating which leg you step with or which muscles it takes to lift a foot and put it back down. That's ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.