Neurons can use local stores for communication needs

Neurons can use local stores for communication needs
The localization of ryanodine receptors (red) in an isolated nerve terminal from the posterior pituitary gland is depicted in this image. Credit: McNally et al., 2014

Researchers reveal that neurons can utilize a supremely localized internal store of calcium to initiate the secretion of neuropeptides, one class of signaling molecules through which neurons communicate with each other and with other cells. The study appears in The Journal of General Physiology.

Neuropeptides are released from through a process that—like other secretory events—is triggered primarily by the influx of calcium into the neuron through voltage-gated channels. Although neuropeptides are stored in large dense core vesicles (LDCVs) that also contain large amounts of calcium, it has been unclear whether these locally based calcium supplies can also be used to modulate .

A team of researchers led by José Lemos from the University of Massachusetts Medical School examined the mechanisms at play during secretion of vasopressin from in the posterior pituitary gland, which releases the into the blood so that it can make its way to the kidney and regulate water retention. The researchers found that certain intracellular calcium channels known as ryanodine receptors are likely responsible for mobilizing calcium from LDCVs to facilitate vasopressin release.

The findings indicate that neurons have a greater capacity than previously appreciated to fine-tune the release of neuropeptides and thereby their communications with other cells.

More information: Paper: McNally, J.M., et al. 2014. J. Gen. Physiol. DOI: 10.1085/jgp.201311110

Related Stories

Loose coupling between calcium channels and sensors

date Feb 06, 2014

In research published in this week's online edition of Science, postdoc Nicholas Vyleta and Professor Peter Jonas of the Institute of Science and Technology Austria uncover the existence of loose coupling betwee ...

Researchers identify how cells control calcium influx

date May 09, 2013

(Medical Xpress)—When brain cells are overwhelmed by an influx of too many calcium molecules, they shut down the channels through which these molecules enter the cells. Until now, the "stop" signal mechanism that cells ...

Recommended for you

The coming merge of human and machine intelligence

date 13 hours ago

For most of the past two million years, the human brain has been growing steadily. But something has recently changed. In a surprising reversal, human brains have actually been shrinking for the last 20,000 ...

How the brain makes decisions

date 14 hours ago

Some types of decision-making have proven to be very difficult to simulate, limiting progress in the development of computer models of the brain. EPFL scientists have developed a new model of complex decision-making, ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.