Neurons can use local stores for communication needs

Neurons can use local stores for communication needs
The localization of ryanodine receptors (red) in an isolated nerve terminal from the posterior pituitary gland is depicted in this image. Credit: McNally et al., 2014

Researchers reveal that neurons can utilize a supremely localized internal store of calcium to initiate the secretion of neuropeptides, one class of signaling molecules through which neurons communicate with each other and with other cells. The study appears in The Journal of General Physiology.

Neuropeptides are released from through a process that—like other secretory events—is triggered primarily by the influx of calcium into the neuron through voltage-gated channels. Although neuropeptides are stored in large dense core vesicles (LDCVs) that also contain large amounts of calcium, it has been unclear whether these locally based calcium supplies can also be used to modulate .

A team of researchers led by José Lemos from the University of Massachusetts Medical School examined the mechanisms at play during secretion of vasopressin from in the posterior pituitary gland, which releases the into the blood so that it can make its way to the kidney and regulate water retention. The researchers found that certain intracellular calcium channels known as ryanodine receptors are likely responsible for mobilizing calcium from LDCVs to facilitate vasopressin release.

The findings indicate that neurons have a greater capacity than previously appreciated to fine-tune the release of neuropeptides and thereby their communications with other cells.

More information: Paper: McNally, J.M., et al. 2014. J. Gen. Physiol. DOI: 10.1085/jgp.201311110

add to favorites email to friend print save as pdf

Related Stories

Loose coupling between calcium channels and sensors

Feb 06, 2014

In research published in this week's online edition of Science, postdoc Nicholas Vyleta and Professor Peter Jonas of the Institute of Science and Technology Austria uncover the existence of loose coupling betwee ...

Researchers identify how cells control calcium influx

May 09, 2013

(Medical Xpress)—When brain cells are overwhelmed by an influx of too many calcium molecules, they shut down the channels through which these molecules enter the cells. Until now, the "stop" signal mechanism that cells ...

Recommended for you

New ALS associated gene identified using innovative strategy

19 hours ago

Using an innovative exome sequencing strategy, a team of international scientists led by John Landers, PhD, at the University of Massachusetts Medical School has shown that TUBA4A, the gene encoding the Tubulin Alpha 4A protein, ...

Can bariatric surgery lead to severe headache?

19 hours ago

Bariatric surgery may be a risk factor for a condition that causes severe headaches, according to a study published in the October 22, 2014, online issue of Neurology, the medical journal of the American Academy of Neurol ...

Bipolar disorder discovery at the nano level

19 hours ago

A nano-sized discovery by Northwestern Medicine scientists helps explain how bipolar disorder affects the brain and could one day lead to new drug therapies to treat the mental illness.

Brain simulation raises questions

23 hours ago

What does it mean to simulate the human brain? Why is it important to do so? And is it even possible to simulate the brain separately from the body it exists in? These questions are discussed in a new paper ...

User comments