SapC-DOPS technology may help with imaging brain tumors, research shows

Just because you can't see something doesn't mean it's not there. Brain tumors are an extremely serious example of this and are not only difficult to treat—both adult and pediatric patients have a five-year survival rate of only 30 percent—but also have even been difficult to image, which could provide important information for deciding next steps in the treatment process.

However, Cincinnati Cancer Center and University of Cincinnati Cancer Institute research studies published in an April online issue of the Journal of Magnetic Resonance Imaging and a May issue of the Journal of Visualized Experiments (JoVE), an online peer-reviewed scientific journal that publishes experimental methods in video format, reveal possibly new ways to image glioblastoma multiforme tumors—a form of brain tumor—using the SapC-DOPS technology.

A lysosomal protein saposin C (SapC), and a phospholipid, known as dioleoylphosphatidylserine (DOPS), can be combined and assembled into tiny cavities, or nanovesicles, to target and kill many forms of cells.

Lysosomes are membrane-enclosed organelles that contain enzymes capable of breaking down all types of biological components; phospholipids are major components of all cell membranes and form lipid bilayers—or cell membranes.

Xiaoyang Qi, PhD, member of the CCC, associate professor in the division of hematology oncology at the University of Cincinnati, a member of the UC Cancer and Neuroscience Institutes and the Brain Tumor Center, says his lab and collaborators have previously found that the combination of two natural cellular components, called SapC-DOPS, caused cell death in cancer cell types, including brain, lung, skin, prostate, blood and breast cancer, while sparing normal cells and tissues.

"We used this knowledge to gain assistance from our collaborators Kati LaSance, Vontz Core Imaging Lab (VCIL) director, and Patrick Winter, PhD, in the Imaging Research Center (IRC) at Cincinnati Children's Hospital Medical Center. We used SapC-DOPS as a transport vesicle to deliver bio-fluorescence agents and gadolinium-labeled contrast agents directly to which provided visualization using optical imaging and MRI," Qi says.

"There are two things lacking when it comes to brain tumors: getting a good picture of them and treating them effectively," says LaSance. "With this discovery, there are possibilities to improve both. With good visualization of the tumor, physicians might one day be able to better determine which form of treatment—chemotherapy, radiation or surgery—would be best for a patient and can image a tumor at its smallest stages with hopes of intervening much earlier."

Qi says this is preclinical research, as the studies were done using animal models that were injected with the SapC-DOPS vesicle assembled with illuminating agents, but is translational in nature and could be tested soon in human populations.

"While optical imaging is not applicable to a patient population, both MRI and PET imaging are," he says. "The bio-fluorescent molecule used in the JoVE study can be substituted for a PET molecule and fortunately, PET imaging is widely used by doctors and hospitals in current cancer patients.

"This research has the potential to make a large impact in treatment of brain tumors, and most importantly, it would not have been impossible without support and collaboration from the VCIL and the IRC."

Related Stories

MRI-guided biopsy for brain cancer improves diagnosis

date May 01, 2014

Neurosurgeons at UC San Diego Heath System have, for the first time, combined real-time magnetic resonance imaging (MRI) technology with novel non-invasive cellular mapping techniques to develop a new biopsy approach that ...

Recommended for you

DNA blood test detects lung cancer mutations

date 12 hours ago

Cancer DNA circulating in the bloodstream of lung cancer patients can provide doctors with vital mutation information that can help optimise treatment when tumour tissue is not available, an international group of researchers ...

Tumors prefer the easy way out

date 15 hours ago

Tumor cells become lethal when they spread. Blocking this process can be a powerful way to stop cancer. Historically, scientists thought that tumor cells migrated by brute force, actively pushing through whatever ...

Brain tumors may be new targets of Ebola-like virus

date 15 hours ago

Brain tumors are notoriously difficult for most drugs to reach, but Yale researchers have found a promising but unlikely new ally against brain cancers—portions of a deadly virus similar to Ebola.

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.