Select sodium channel blockers have anti-diabetic effects

May 15, 2014
Select sodium channel blockers have anti-diabetic effects

(HealthDay)—Blockade of voltage-gated sodium channels (NaChs) in pancreatic α cells has anti-diabetic effects, according to research published online May 8 in Diabetes.

Arvinder K. Dhalla, Ph.D., of Gilead Sciences in Fremont, Calif., and colleagues tested the hypothesis that the mechanism by which ranolazine, a NaCh blocker approved for use in angina, exerts anti-diabetic effects is inhibition of glucagon release through blockade of sodium channels in α cells.

The researchers found that ranolazine causes blockade of in pancreatic α cells, inhibits their , and reduces the release of glucagon. The release of glucagon in human pancreatic islets is mediated by the Nav1.3 isoform. In animal models, ranolazine and a more selective sodium channel blocker, GS-458967, reduced postprandial and basal glucagon levels; these changes were associated with a reduction in hyperglycemia.

"The findings from the present study suggest that inhibition of α-cell INa could become an attractive drug target for combination with other classes of anti-diabetic agents," the authors write.

Explore further: Scientists identify third critical hormone in Type 2 diabetes

More information: Abstract
Full Text (subscription or payment may be required)

Related Stories

Researchers make exciting discoveries in non-excitable cells

October 17, 2013

It has been 60 years since scientists discovered that sodium channels create the electrical impulses crucial to the function of nerve, brain, and heart cells—all of which are termed "excitable." Now researchers at Yale ...

Recommended for you

Low-carb diet may aid your metabolism

December 2, 2016

(HealthDay)—Eating low-carbohydrate meals may lead to healthy changes in a woman's metabolism that don't occur when consuming higher-carbohydrate meals, a small study suggests.

Research shows nerve growth protein controls blood sugar

November 14, 2016

Research led by a Johns Hopkins University biologist demonstrates the workings of a biochemical pathway that helps control glucose in the bloodstream, a development that could potentially lead to treatments for diabetes.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.