Visual clue to new Parkinson's disease therapies

Immunohistochemistry for alpha-synuclein showing positive staining (brown) of an intraneural Lewy-body in the Substantia nigra in Parkinson's disease. Credit: Wikipedia

A biologist and a psychologist at the University of York have joined forces with a drug discovery group at Lundbeck in Denmark to develop a potential route to new therapies for the treatment of Parkinson's Disease (PD).

Dr Chris Elliott, of the Department of Biology, and Dr Alex Wade, of the Department of Psychology, have devised a technique that could both provide an of the disease and result in therapies to mitigate its symptoms.

In research reported in Human Molecular Genetics, they created a more sensitive test which detected neurological changes before degeneration of the nervous system became apparent.

In laboratory tests using , the researchers discovered that a human genetic mutation that causes Parkinson's amplified visual signals in young flies dramatically. This resulted in loss of vision in later life.

Working with researchers from the Danish pharmaceutical company, H.Lundbeck A/S, they tested a new drug that targets the Parkinson's mutation in flies. This drug prevented the abnormal changes in the flies' visual function.

It is the first time that the compound has been used in vivo and its effectiveness was analysed using the new, sensitive technique devised by Dr Wade. This was originally used for measuring vision in people with eye disease and epilepsy.

Dr Elliott, who is part-funded by Parkinson's UK, said: "If this kind of drug proves to be successful in clinical trials, it would have the potential to bring long-lasting relief from PD symptoms and fewer side effects than existing levadopa therapy."

Dr Wade added: "This technique forms a remarkable bridge between human clinical science and animal research. If it proves successful in the future, it could open the door to a new way of studying a whole range of neurological diseases."

Senior Vice President, Research at Lundbeck, Kim Andersen, said: "This new research may prove to be groundbreaking in the understanding and treatment of Parkinson's disease. Science does not currently have answers for what happens in the brain before and during the disease, but these discoveries may bring us closer to this understanding. This may also give us the opportunity to revolutionize the diagnosis and treatment of Parkinson's disease, for the benefit of patients and their families."

More information: The paper 'Abnormal visual gain control in a Parkinson's Disease model' is published in Human Molecular Genetics hmg.oxfordjournals.org/content… 014/04/08/hmg.ddu159

add to favorites email to friend print save as pdf

Related Stories

Treating depression in Parkinson's patients

Apr 18, 2014

A group of scientists from the University of Kentucky College of Medicine and the Sanders-Brown Center on Aging has found interesting new information in a study on depression and neuropsychological function in Parkinson's ...

Researchers investigating genetics of Parkinson's disease

Mar 11, 2014

(Medical Xpress)—Researchers at Emory University School of Medicine will study individuals with genetic mutations associated with Parkinson's disease (PD) as part of the Parkinson's Progression Markers Initiative (PPMI), ...

Recommended for you

Weight and eating habits in Parkinson's disease

Nov 20, 2014

Patients affected by Parkinson's disease often show marked changes in body weight: they may gain or lose a lot of weight depending on the stage of the disease, or they may put on up to ten kilos after deep brain stimulation ...

Scientists create Parkinson's disease in a dish

Nov 06, 2014

A team of scientists led by The New York Stem Cell Foundation (NYSCF) Research Institute successfully created a human stem cell disease model of Parkinson's disease in a dish. Studying a pair of identical ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.