Anti-dsDNA, surface-expressed TLR4 and endosomal TLR9 cooperate to exacerbate lupus

June 12, 2014

Systemic lupus erythematosus (SLE) is a complicated multifactorial autoimmune disease influenced by many genetic and environmental factors. The hallmark of systemic lupus erythematosus (SLE) is the presence of high levels of anti-double-stranded DNA autoantibody (anti-dsDNA) in sera. In addition, greater infection rates are found in SLE patients and higher morbidity and mortality usually come from bacterial infections. Deciphering interactions between the susceptibility genes and the environmental factors for lupus complex traits is challenging and has resulted in only limited success.

In the June issue of Experimental Biology and Medicine Lee et al, from National Yang-Ming University in Taiwan, studied the role of anti-double stranded DNA (anti-dsDNA) and the Toll-like receptors (TLRs), TLR4 and TLR9, in the pathogenesis of lupus. They prepared transgenic mice carrying the anti-dsDNA transgene and challenged these mice with TLR4 and TLR9 agonists. They demonstrate that in the anti-dsDNA transgenic mice TLR4 and TLR9 are cooperatively linked to Lupus progression.

''Since simultaneous activation of extracellular and intracellular pattern-recognition receptors (PRR) is able to trigger more intense host immune responses, it is really crucial to determine whether co-engagement of extracellular and intracellular PRRs may increase disease severity in lupus,'' said Dr. Kuang-Hui Sun, corresponding author. However, only individual conditional knockout models were used in previous studies to study the roles of TLR4 or TLR9. In addition, intracellular nucleic acid-sensing TLR9 plays either stimulatory or protective roles in different murine lupus models. Therefore, Sun and colleagues injected the ligands of TLR4 and TLR9 into the anti-dsDNA transgenic mice as a new model to investigate whether anti-dsDNA and co-activation of extracellular TLR4 and endosomal TLR9 impacts the pathogenesis of in normal background mice. Their data suggest that, in addition to anti-dsDNA, signaling pathways triggered by simultaneous activation of surface-expressed TLR4 and endosomal TLR9 can promote the progression of SLE. These results suggest that simultaneous targeting of anti-dsDNA, TLR4 and 9 may be a potential therapy for SLE.

Dr. Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine, said "These studies in offer new concepts for affecting immune tolerance and reducing SLE disease progression as future therapeutics are developed."

Explore further: Predictors of organ damage identified in patients with SLE

Related Stories

Predictors of organ damage identified in patients with SLE

December 16, 2012

(HealthDay)—Patient age, hypertension, and corticosteroid use are the most important predictors of the cumulative organ damage that occurs in patients with systemic lupus erythematosus (SLE), according to research published ...

A nanogel-based treatment for lupus

March 1, 2013

Systemic lupus erythematosus (SLE) is disease in which the immune system mistakenly attacks healthy tissues, resulting in inflammation and tissue damage. Current treatments are focused on suppression of the immune system, ...

Genetic mutation causes lupus in mice

January 3, 2014

Yale researchers have identified a genetic mutation that leads to lupus in mice. The discovery could open the way for development of therapies that target the mutation. The study appears in Cell Reports.

Recommended for you

Monkeys in Asia harbor virus from humans, other species

November 19, 2015

When it comes to spreading viruses, bats are thought to be among the worst. Now a new study of nearly 900 nonhuman primates in Bangladesh and Cambodia shows that macaques harbor more diverse astroviruses, which can cause ...

One-step test for hepatitis C virus infection developed

November 14, 2015

UC Irvine Health researchers have developed a cost-effective one-step test that screens, detects and confirms hepatitis C virus (HCV) infections. Dr. Ke-Qin Hu, director of hepatology services, will present findings at the ...

Computer model reveals deadly route of Ebola outbreak

November 10, 2015

Using a novel statistical model, a research team led by Columbia University's Mailman School of Public Health mapped the spread of the 2014-2015 Ebola outbreak in Sierra Leone, providing the most detailed picture to date ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.