Anxiety in invertebrates opens research avenues

by Laetitia Louis
Credit: Jean-Paul Delbecque

Fr the first time, CNRS researchers and the Université de Bordeaux have produced and observed anxiety-like behavior in crayfish, which disappears when a dose of anxiolytic is injected. This work, published in Science on June 13, 2014, shows that the neuronal mechanisms related to anxiety have been preserved throughout evolution. This analysis of ancestral behavior in a simple animal model opens up new avenues for studying the neuronal bases for this emotion.

Anxiety can be defined as a behavioral response to , consisting in lasting apprehension of future events. It prepares individuals to detect threats and anticipate them appropriately so as to increase their chances of survival. However, when stress is chronic, becomes pathological and may lead to depression.

Until now, non-pathological anxiety had only been described in humans and a few vertebrates. For the first time, it has been observed in an invertebrate. To achieve this, researchers at the Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (CNRS/Université de Bordeaux) and the Institut des Maladies Neurodégénératives (CNRS/Université de Bordeaux) repeatedly exposed crayfish to an electric field for thirty minutes. They then placed the crayfish in an aquatic cross-shaped maze. Two arms of the maze were lit up (which repels the crustaceans) and two were dark-which they find reassuring.

The researchers analyzed the of the crayfish. Those made anxious tended to remain in the dark areas of the maze, by contrast to control crayfish, which explored the entire maze. This behavior is an adaptive response to a felt stress: the animal aims to minimize the risk of meeting an attacker. This emotional state wore itself out after about one hour.

Anxiety in crayfish is correlated to increased serotonin concentration in their brains. Neurotransmitter serotonin is involved in regulating many physiological processes in both invertebrates and humans. It is released when stress is experienced and regulates several responses related to anxiety, such as increasing blood glucose levels. The researchers have also highlighted that injecting an anxiolytic commonly used in humans (benzodiazepine) stops the prevention behavior in crayfish. This shows how early neural mechanisms that trigger or inhibit anxiety-like behavior appeared in the evolutionary process and that they have been well preserved over time.

This work provides researchers specializing in stress and anxiety with a unique . Crayfish have a simple nervous system whose neurons are easy to record, so they may shed light on the neuronal mechanisms at work when stress is experienced, as well as on the role of neurotransmitters such as serotonin or GABA. The team now plans to study anxiety in subject to social stress and the neuronal changes that occur when the anxiety is prolonged for several days.

More information: P. Fossat, J. Bacque-Cazenave, P. De Deurwaerdere, J.-P. Delbecque, D. Cattaert. "Anxiety-like behavior in crayfish is controlled by serotonin." Science, 2014; 344 (6189): 1293 DOI: 10.1126/science.1248811

Related Stories

First fMRI images of individual neurons

date Jun 04, 2014

A research team from CEA NeuroSpin and the Institut de neurosciences cognitives et intégratives d'Aquitaine (CNRS/Université de Bordeaux) demonstrated the possibility to obtain functional magnetic resonance images (fMRI) ...

Recommended for you

Making waves with groundbreaking brain research

date Jul 03, 2015

New research by Jason Gallivan and Randy Flanagan suggests that when deciding which of several possible actions to perform, the human brain plans multiple actions simultaneously prior to selecting one of ...

Long-term memories are maintained by prion-like proteins

date Jul 02, 2015

Research from Eric Kandel's lab at Columbia University Medical Center (CUMC) has uncovered further evidence of a system in the brain that persistently maintains memories for long periods of time. And paradoxically, ...

Water to understand the brain

date Jul 02, 2015

To observe the brain in action, scientists and physicians use imaging techniques, among which functional magnetic resonance imaging (fMRI) is the best known. These techniques are not based on direct observations ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.