'Big data' technique improves monitoring of kidney transplant patients

A new data analysis technique could radically improve monitoring of kidney transplant patients, according to new research published this week in PLOS Computational Biology.

The research, carried out by a team comprising physicists, chemist and clinicians at the University of Leeds, provides a method for making sense out of the huge number of clues about a kidney transplant patient's prognosis contained in their blood.

By applying a sophisticated "big data" analysis to the samples, scientists were able to process hundreds of thousands of variables into a single parameter to indicate how a was faring. This allowed them to predict poor function of a kidney after only two days in cases that may not have been previously detected as failing until weeks after transplant.

These extra few days are vital in the early stages after transplant and would give doctors a better chance to intervene to save the transplant and improve patient recovery periods. In some cases, the team were able to predict failure from patients' blood samples taken before the transplant operation.

Dr Sergei Krivov, in the University of Leeds' Astbury Center, said: "If you put a blood sample through Nuclear Magnetic Resonance analysis you get data down to the molecular level. You can identify chemical fingerprints left behind by specific cellular processes and you get a very large number of different parameters in those samples that vary with the outcome for a patient.

"These are vital clues. But, if you have got thousands of variables all moving in different ways in a complex system, how does a doctor bring all that information together and decide what to do? It is not possible to do this with the human mind; there are just too many variables. We have to do it with computers and find a way to weigh those variables and produce an intelligible output describing where, overall, the patient is heading."

The study, which analysed data from daily from 18 patients immediately before and in a week-long period after kidney transplants, showed that it was possible to pick out pieces of information that varied with the overall likelihood of a patient either rejecting a kidney or recovering .

Given enough data, the technique could even be used to quantify very complex and extended processes affecting the whole population.

More information: Krivov SV, Fenton H, Goldsmith PJ, Prasad RK, Fisher J, et al. (2014) Optimal Reaction Coordinate as a Biomarker for the Dynamics of Recovery from Kidney Transplant. PLoS Comput Biol 10(6): e1003685. DOI: 10.1371/journal.pcbi.1003685 .

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Exploring 3-D printing to make organs for transplants

Jul 30, 2014

Printing whole new organs for transplants sounds like something out of a sci-fi movie, but the real-life budding technology could one day make actual kidneys, livers, hearts and other organs for patients ...

High frequency of potential entrapment gaps in hospital beds

Jul 30, 2014

A survey of beds within a large teaching hospital in Ireland has shown than many of them did not comply with dimensional standards put in place to minimise the risk of entrapment. The report, published online in the journal ...

Key element of CPR missing from guidelines

Jul 29, 2014

Removing the head tilt/chin lift component of rescue breaths from the latest cardiopulmonary resuscitation (CPR) guidelines could be a mistake, according to Queen's University professor Anthony Ho.

Burnout impacts transplant surgeons (w/ Video)

Jul 28, 2014

Despite saving thousands of lives yearly, nearly half of organ transplant surgeons report a low sense of personal accomplishment and 40% feel emotionally exhausted, according to a new national study on transplant surgeon ...

User comments