Brain imaging shows enhanced executive brain function in people with musical training

June 17, 2014
This image shows functional MRI imaging during mental task switching: Panels A and B shows brain activation in musically trained and untrained children, respectively. Panel C shows brain areas that are more active in musically trained than musically untrained children. Credit: Laboratories of Cognitive Neuroscience, Boston Children's Hospital

A controlled study using functional MRI brain imaging reveals a possible biological link between early musical training and improved executive functioning in both children and adults, report researchers at Boston Children's Hospital. The study, appearing online June 17 in the journal PLOS ONE, uses functional MRI of brain areas associated with executive function, adjusting for socioeconomic factors.

Executive functions are the high-level cognitive processes that enable people to quickly process and retain information, regulate their behaviors, make good choices, solve problems, plan and adjust to changing mental demands.

"Since executive functioning is a strong predictor of academic achievement, even more than IQ, we think our findings have strong educational implications," says study senior investigator Nadine Gaab, PhD, of the Laboratories of Cognitive Neuroscience at Boston Children's. "While many schools are cutting music programs and spending more and more time on test preparation, our findings suggest that may actually help to set up for a better academic future."

While it's already clear that musical training relates to cognitive abilities, few previous studies have looked at its effects on executive functions specifically. Among these studies, results have been mixed and limited by a lack of objective brain measurements, examination of only a few aspects of , lack of well-defined musical training and control groups, and inadequate adjustment for factors like socioeconomic status.

Gaab and colleagues compared 15 musically trained children, 9 to 12, with a control group of 12 untrained children of the same age. Musically trained children had to have played an instrument for at least two years in regular private music lessons. (On average, the children had played for 5.2 years and practiced 3.7 hours per week, starting at the age of 5.9.) The researchers similarly compared 15 adults who were active professional musicians with 15 non-musicians. Both control groups had no musical training beyond general school requirements.

Since family demographic factors can influence whether a child gets private music lessons, the researchers matched the musician/non-musician groups for parental education, job status (parental or their own) and family income. The groups, also matched for IQ, underwent a battery of cognitive tests, and the children also had functional MRI imaging (fMRI) of their brains during testing.

On cognitive testing, adult musicians and musically trained children showed enhanced performance on several aspects of executive functioning. On fMRI, the children with musical training showed enhanced activation of specific areas of the during a test that made them switch between mental tasks. These areas, the supplementary motor area, the pre-supplementary area and the right ventrolateral prefrontal cortex, are known to be linked to executive function.

"Our results may also have implications for children and adults who are struggling with executive functioning, such as children with ADHD or [the] elderly," says Gaab. "Future studies have to determine whether music may be utilized as a therapeutic intervention tools for these children and adults."

The researchers note that children who study music may already have executive functioning abilities that somehow attract them to music and predispose them to stick with their lessons. To establish that musical training influences executive function, and not the other way around, they hope to perform additional studies that follow children over time, assigning them to musical training at random.

Explore further: Practicing music for only few years in childhood helps improve adult brain: research

Related Stories

Are kids who take music lessons different from other kids?

May 23, 2013

(Medical Xpress)—Research by U of T Mississauga psychology professor Glenn Schellenberg reveals that two key personality traits – openness-to-experience and conscientiousness—predict better than IQ who will take music ...

Picking up mistakes

September 30, 2013

(Medical Xpress)—Musicians have sharper minds are able to pick up mistakes and fix them quicker than the rest of us, according to new research.

Musical training increases blood flow in the brain

May 7, 2014

Research by the University of Liverpool has found that brief musical training can increase the blood flow in the left hemisphere of our brain. This suggests that the areas responsible for music and language share common brain ...

Recommended for you

New insights on how cocaine changes the brain

November 25, 2015

The burst of energy and hyperactivity that comes with a cocaine high is a rather accurate reflection of what's going on in the brain of its users, finds a study published November 25 in Cell Reports. Through experiments conducted ...

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...

No cable spaghetti in the brain

November 24, 2015

Our brain is a mysterious machine. Billions of nerve cells are connected such that they store information as efficiently as books are stored in a well-organized library. To this date, many details remain unclear, for instance ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jun 18, 2014
when characterizing any 'nurture' based variable , use siblings/twins to reduce genetic , anecdotal , and self selection noise

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.