Study shows chikungunya mutation places several countries at risk of epidemic

For the first time, University of Texas Medical Branch at Galveston researchers were able to predict further adaptations of the chikungunya virus that recently spread from Africa to several continents that will likely result in even more efficient transmission and infection of more people by this virus strain.

A key factor in a viruses' potential to sustain its circulation and ultimately cause disease is its ability to adapt to new host environments. The number and complexity of these adaptations is shaped by how hospitable the new host is to a certain .

Since 2005, 1 in 1,000 infections has resulted in a fatal disease. "A typical infection involves very severe arthritic symptoms, leaving the sufferer severely afflicted by pain to the point where people can't work or function normally," said UTMB professor Scott Weaver, lead author of this paper that will be published in Nature Communications. "Chikungunya continues to be a major threat to public health around the world."

A UTMB team previously found that a recently emerged lineage strain of the chikungunya virus has adapted itself to be hosted by not only the Aedes aegypti mosquito that lives mainly in the tropics but also to the Asian tiger mosquito, A. albopictus, which can currently be found on all continents except Antarctica. This mutation in the Indian Ocean lineage occurred through a single adaptive change in the virus' genetic code that alters one protein in the envelope surrounding the virus.

Their newest investigation analyzed recent events in chikungunya virus evolution that will aid in predicting future trends in transmission and circulation that determine epidemic potential. Weaver and his team found that the initial adaption provided the framework for a second wave of adaptations that can enable rapid diversification of viral strains and even more efficient transmission to people. In addition, analysis of the chikungunya expressing a combination of the second-wave adaptive mutations revealed a similar pattern of changes and heightened adaptive qualities suggesting the future emergence of even higher transmission efficiency.

The researchers concluded that the Indian Ocean lineage of chikungunya virus that has spread to the Indian Ocean Basin, Southeast Asia, Oceania and Europe continues to mutate and adapt to develop higher efficiency for transmission by the Asian tiger mosquito. "Although a different chikungunya virus strain from the Asian lineage is now circulating in the Americas, the introduction of the Indian Ocean lineage could put temperate regions where A. albopictus thrives at risk for expansion of epidemic circulation," Weaver cautioned.

add to favorites email to friend print save as pdf

Related Stories

Chikungunya poised to invade the Americas

Apr 07, 2014

A team of French and Brazilian researchers warn that chikungunya virus is poised to invade, and become epidemic in the Americas according to research published ahead of print in the Journal of Virology.

WHO sees first chikungunya cases in western hemisphere

Dec 10, 2013

Cases of chikungunya have occurred on the Caribbean island of Saint Martin, marking the first time the mosquito-borne disease has spread in the western hemisphere, the World Health Organisation (WHO) said on Tuesday.

Recommended for you

WHO: Ebola vaccine trials in W. Africa in January

11 hours ago

Tens of thousands of doses of experimental Ebola vaccines could be available for "real-world" testing in West Africa as soon as January as long as they are deemed safe, a top World Health Organization official ...

Ebola cases rise sharply in western Sierra Leone

11 hours ago

After emerging months ago in eastern Sierra Leone, Ebola is now hitting the western edges of the country where the capital is located with dozens of people falling sick each day, the government said Tuesday. So many people ...

User comments