A step closer to bio-printing transplantable tissues and organs

Researchers have made a giant leap towards the goal of 'bio-printing' transplantable tissues and organs for people affected by major diseases and trauma injuries, a new study reports.

Scientists from the Universities of Sydney, Harvard, Stanford and MIT have bio-printed artificial vascular networks mimicking the body's that are necessary for growing large complex tissues.

"Thousands of people die each year due to a lack of organs for transplantation," says study lead author and University of Sydney researcher, Dr Luiz Bertassoni.

"Many more are subjected to the surgical removal of tissues and organs due to cancer, or they're involved in accidents with large fractures and injuries.

"Imagine being able to walk into a hospital and have a full organ printed – or bio-printed, as we call it – with all the cells, proteins and in the right place, simply by pushing the 'print' button in your computer screen.

"We are still far away from that, but our research is addressing exactly that. Our finding is an important new step towards achieving these goals.

"At the moment, we are pretty much printing 'prototypes' that, as we improve, will eventually be used to change the way we treat patients worldwide."

The research challenge – networking cells with a .

Cells need ready access to nutrients, oxygen and an effective 'waste disposal' system to sustain life. This is why 'vascularisation' – a functional transportation system – is central to the engineering of and organs.

"One of the greatest challenges to the engineering of large tissues and organs is growing a network of vessels and capillaries," says Dr Bertassoni.

"Cells die without an because blood supplies oxygen that's necessary for cells to grow and perform a range of functions in the body."

"To illustrate the scale and complexity of the bio-engineering challenge we face, consider that every cell in the body is just a hair's width from a supply of oxygenated blood.

"Replicating the complexity of these networks has been a stumbling block preventing tissue engineering from becoming a real world clinical application."

But this is what researchers have now achieved.

What the researchers achieved

Using a high-tech 'bio-printer', the researchers fabricated a multitude of interconnected tiny fibres to serve as the mold for the .

They then covered the 3D printed structure with a cell-rich protein-based material, which was solidified by applying light to it.

Lastly they removed the bio-printed fibres to leave behind a network of tiny channels coated with , which self organised to form stable in less than a week (see diagram below).

The study reveals that the bioprinted vascular networks promoted significantly better cell survival, differentiation and proliferation compared to cells that received no nutrient supply.

Significance of the breakthrough

According to Dr Bertassoni, a major benefit of the new bio-printing technique is the ability to fabricate large three-dimensional micro-vascular channels capable of supporting life on the fly, with enough precision to match individual patients' needs.

"While recreating little parts of tissues in the lab is something that we have already been able to do, the possibility of printing three-dimensional tissues with functional blood capillaries in the blink of an eye is a game changer," he says.

"Of course, simplified regenerative materials have long been available, but true regeneration of complex and functional organs is what doctors really want and patients really need, and this is the objective of our work.

add to favorites email to friend print save as pdf

Related Stories

An essential step toward printing living tissues

Feb 19, 2014

A new bioprinting method developed at the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Harvard School of Engineering and Applied Sciences (SEAS) creates intricately patterned ...

Bioprinting new organs

Apr 03, 2014

With the new 3D Bioprinter, the research group of Professor Paul Gatenholm at the Department of Chemical and Biological Engineering exploits new possibilities of tissue engineering and organ regeneration.

Researchers transplant regenerated oesophagus

Apr 15, 2014

Tissue engineering has been used to construct natural oesophagi, which in combination with bone marrow stem cells have been safely and effectively transplanted in rats. The study, published in Nature Communications, shows ...

Recommended for you

Team finds key signaling pathway in cause of preeclampsia

3 hours ago

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

7 hours ago

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments