3-D computer model may help refine target for deep brain stimulation therapy for dystonia

June 25, 2014

Although deep brain stimulation can be an effective therapy for dystonia – a potentially crippling movement disorder – the treatment isn't always effective, or benefits may not be immediate. Precise placement of DBS electrodes is one of several factors that can affect results, but few studies have attempted to identify the "sweet spot," where electrode placement yields the best results.

Researchers led by investigators at Cedars-Sinai, using a complex set of data from records and imaging scans of patients who have undergone successful DBS implantation, have created 3-D, computerized models that map the brain region involved in dystonia. The models identify an anatomical target for further study and provide information for neurologists and neurosurgeons to consider when planning surgery and making device programming decisions.

"We know DBS works as a treatment for dystonia, but we don't know exactly how it works or why some patients have better, quicker results than others. Patient age, disease duration and other underlying factors have a role, and we believe electrode positioning and device programming are critical, but there is no consensus on ideal device placement and optimal programming strategies," said Michele Tagliati, MD, director of the Movement Disorders Program in the Department of Neurology at Cedars-Sinai.

"This modeling paves the way for the construction of practical therapeutic and investigational targets," added Tagliati, senior author of an article now available on the online edition of Annals of Neurology.

Medications usually are the first line of treatment for dystonia and several other , but if drugs fail – as frequently happens – or side effects are excessive, neurologists and neurosurgeons may supplement them with . Electrical leads are implanted deep in the brain, and a pulse generator is placed near the collarbone. The device is later programmed with a remote, hand-held controller.

To calm the disorganized muscle contractions of dystonia, doctors generally target a brain structure called the globus pallidus, but studies on precise positioning of electrode contacts and the best programming parameters – such as the intensity and frequency of electrical stimulation – are rare and conflicting. Finding the most effective settings can take months of fine-tuning.

In this retrospective study, investigators examined a database of 94 patients with the most common genetic form of , DYT1, who had been treated with DBS for at least a year. They selected 21 patients who had good responses to treatment, compiled their demographic and treatment information, and used magnetic resonance imaging scans to create 3-D anatomical models with a fine grid to show exact location of relevant brain structures.

The investigators then simulated the placement of electrodes as they were positioned in the patients' brains and input the actual stimulation parameters into a computer program – a "volume of tissue activation" model – which calculated detailed information specific to each patient and each electrode. The model draws on principles of neurophysiology – the way nerve cells respond to DBS – the biophysics of voltage distribution from electrodes, and the anatomy of the globus pallidus and surrounding structures.

"We found that clinicians were applying relatively large amounts of energy to wide swaths of the globus pallidus, but the area in common among most individuals was much smaller. We interpret this as being the potential 'target within the target,' and if our results are validated in further research and clinical practice, computer modeling may offer a physiologically-based, data-driven, visualized approach to clinical decision-making," Tagliati said.

Explore further: Cedars-Sinai movement disorders expert on international task force for dystonia treatment

More information: Annals of Neurology: "Defining a Therapeutic Target for Pallidal Deep Brain Stimulation for Dystonia." Online June 18, 2014. onlinelibrary.wiley.com/doi/10.1002/ana.24187/abstract

Related Stories

Recommended for you

New insights on how cocaine changes the brain

November 25, 2015

The burst of energy and hyperactivity that comes with a cocaine high is a rather accurate reflection of what's going on in the brain of its users, finds a study published November 25 in Cell Reports. Through experiments conducted ...

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...

No cable spaghetti in the brain

November 24, 2015

Our brain is a mysterious machine. Billions of nerve cells are connected such that they store information as efficiently as books are stored in a well-organized library. To this date, many details remain unclear, for instance ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.