Inner ear stem cells hold promise for restoring hearing

Spiral ganglion cells are essential for hearing and their irreversible degeneration in the inner ear is common in most types of hearing loss. Adult spiral ganglion cells are not able to regenerate. However, new evidence in a mouse model shows that spiral ganglion stem cells present in the inner ear are capable of self-renewal and can be grown and induced to differentiate into mature spiral ganglion cells as well as neurons and glial cells, as described in an article in BioResearch Open Access.

Marc Diensthuber and coauthors from Goethe-University (Frankfurt, Germany), Justus-Liebig University (Giessen, Germany), Harvard Medical School and Massachusetts Eye and Ear Infirmary (Boston, MA), and Harvard University and MIT (Cambridge, MA), conclude that the self-renewing properties demonstrated by spiral ganglion stem cells make them a promising source of replacement cells for therapies designed to regenerate the neural structures of the in the article "Spiral Ganglion Stem Cells Can Be Propagated and Differentiated Into Neurons and Glia."

"These findings are particularly interesting as they show that spiral ganglion stem cells can be propagated in vitro," says BioResearch Open Access Editor Jane Taylor, PhD, MRC Centre for Regenerative Medicine, University of Edinburgh, Scotland. "These cells are normally poorly regenerated in the mammalian ear."

More information: The article is available free on the BioResearch Open Access website.

add to favorites email to friend print save as pdf

Related Stories

A new step towards the understanding of hearing

Feb 18, 2013

(Medical Xpress)—The results published in Nature Communications enables us to consider eventual therapeutic strategies to restore the sensorial innervation of the cochlea, an organ essential to hearing.

Recommended for you

Growing a blood vessel in a week

18 hours ago

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

21 hours ago

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments