First fMRI images of individual neurons

A research team from CEA NeuroSpin and the Institut de neurosciences cognitives et intégratives d'Aquitaine (CNRS/Université de Bordeaux) demonstrated the possibility to obtain functional magnetic resonance images (fMRI) with single cell resolution. These results have been published in PNAS.

The researchers studied the Aplysia californica, a marine gastropod mollusk commonly known as "sea hare", whose nervous system is composed of a small number of neurons (20 000). They obtained images of the majority of neurons within the buccal ganglia of the animal using an ultra-high MRI system (17.2 T).

The technique implemented relied on injecting into the living animal small quantities (non-toxic doses) of a contrast agent, manganese, which enters and accumulates within active neurons. Maps of the manganese distribution within the buccal network were subsequently obtained revealing the neurons activated by different food stimuli.

The presence of an aliment in the animal's environment and its ingestion lead to different neuronal responses in the same neurons. Therefore, this microscopic fMRI technique can be used to probe the functional organization and plasticity of neuronal networks with single cell resolution

Applying this method to studying the entire of the Aplysia will allow, in the near future, investigations of functional alteration leading to neurological damage. Using the same approach to investigate vertebrate nervous systems is challenging but certainly not impossible. Magnetic resonance microscopy images of chemically fixed human and porcine have been obtained at lower magnetic field strengths. It is conceivable that the method published in PNAS coupled with improved hardware technologies (microcoils, stronger magnetic field gradients) will allow single-cell functional magnetic resonance studies of live mammalian tissues.

More information: Paper: Functional magnetic resonance microscopy at single-cell resolution in Aplysia californica, Guillaume Radecki, DOI: 10.1073/pnas.1403739111

add to favorites email to friend print save as pdf

Related Stories

Illuminating neuron activity in 3-D

May 18, 2014

Researchers at MIT and the University of Vienna have created an imaging system that reveals neural activity throughout the brains of living animals. This technique, the first that can generate 3-D movies ...

Perfecting the combined MR/PET

Jun 03, 2014

PET (Positron Emission Tomography) is an imaging technique that provides insight into the metabolic and functional alterations related to pathologic process. CT (Computerized X-Ray Tomography) and MRI (Magnetic ...

Better insight into brain anatomical structures

Jun 15, 2007

Magnetic resonance imaging is a very effective method for revealing anatomical details of soft tissues. Contrast agents can help to make these images even clearer and allow physiological processes to be followed in real time. ...

Recommended for you

'Trigger' for stress processes discovered in the brain

6 hours ago

At the Center for Brain Research at the MedUni Vienna an important factor for stress has been identified in collaboration with the Karolinska Institutet in Stockholm (Sweden). This is the protein secretagogin ...

New research supporting stroke rehabilitation

Nov 26, 2014

Using world-leading research methods, the team of Dr David Wright and Prof Paul Holmes, working with Dr Jacqueline Williams from the Victoria University in Melbourne, studied activity in an area of the brain ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.