A game of ping-pong for the eyes

 Brain cells encoding both the speed of the landscape and the eye movement ensure that we can recognize a passing scenery instead of seeing it blurred. Credit: Mareike Kardinal/Bernstein Koordinationsstelle

Enjoying the landscape when traveling by train – while this activity sounds like pure relaxation, in reality, it requires maximum performance from our eyes' motor system. To prevent blurring of the passing image, our eyes need to follow the environmental pace with many repetitive brief movements. Scientists led by Professor Stefan Glasauer of LMU Munich and the Bernstein Center, in collaboration with colleagues from the Washington National Primate Research Center at the University of Washington in Seattle, have now found that neurons in the posterior parietal lobe play an important role in the conversion of the landscape stimuli into a control signal for the eye muscles.

"By means of electrophysiological recordings, we have shown that nerve cells in the so-called MSTd area combine information about the motion of the on the retina with the velocity of eye movements," Lukas Brostek from LMU – first author of the study – explains. Moreover, how this is done clearly differs from cell to cell – thereby enabling the generation of completely new signals. Using computer models, the researchers demonstrated that the observed distribution of signal combinations corresponds exactly to the one required to calculate the velocity of the ambient scene. This is the information the brain ultimately requires to control eye movements.

Several areas of the brain are involved in the control of the optokinetic reflex. The necessary information processing includes essentially three steps: In the first step, the speed of a visual stimulus on the retina is calculated. In the second, the proper motion is combined with this information to obtain the environmental velocity. This is the process that the researchers were able to localize in the brain. "The neurons whose activity we have recorded provide the basis for the final step – the unconscious control of . In this way, they ensure that our match the pace of environmental motion and that we can recognize the passing scenery instead of seeing it blurred," Glasauer says.

More information: Lukas Brostek, Ulrich Büttner, Michael J. Mustari, and Stefan Glasauer. "Eye Velocity Gain Fields in MSTd during Optokinetic Stimulation." Cereb. Cortex first published online February 20, 2014 DOI: 10.1093/cercor/bhu024

add to favorites email to friend print save as pdf

Related Stories

Looking at something can change our perception of time

Mar 25, 2014

Human eyes are constantly moving. Most people make more than 10,000 eye movements every hour – adding up to more than 160,000 in an average waking day. Many of these eye movements are quite reflexive. Something catches ...

Lining up our sights

Mar 24, 2014

Neurologists at Ludwig Maximilian University of Munich have studied the role of the vestibular system, which controls balance, in optimizing how we direct our gaze. The results could lead to more effective ...

Car or pedestrian -- How we can follow objects with our eyes

Oct 02, 2008

When an object moves fast, we follow it with our eyes: our brain correspondingly calculates the speed of the object and adapts our eye movement to it. This in itself is an enormous achievement, yet our brain can do even more ...

Recommended for you

'Chatty' cells help build the brain

19 hours ago

The cerebral cortex, which controls higher processes such as perception, thought and cognition, is the most complex structure in the mammalian central nervous system. Although much is known about the intricate ...

'Trigger' for stress processes discovered in the brain

Nov 27, 2014

At the Center for Brain Research at the MedUni Vienna an important factor for stress has been identified in collaboration with the Karolinska Institutet in Stockholm (Sweden). This is the protein secretagogin ...

New research supporting stroke rehabilitation

Nov 26, 2014

Using world-leading research methods, the team of Dr David Wright and Prof Paul Holmes, working with Dr Jacqueline Williams from the Victoria University in Melbourne, studied activity in an area of the brain ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.