A game of ping-pong for the eyes

June 4, 2014
 Brain cells encoding both the speed of the landscape and the eye movement ensure that we can recognize a passing scenery instead of seeing it blurred. Credit: Mareike Kardinal/Bernstein Koordinationsstelle

Enjoying the landscape when traveling by train – while this activity sounds like pure relaxation, in reality, it requires maximum performance from our eyes' motor system. To prevent blurring of the passing image, our eyes need to follow the environmental pace with many repetitive brief movements. Scientists led by Professor Stefan Glasauer of LMU Munich and the Bernstein Center, in collaboration with colleagues from the Washington National Primate Research Center at the University of Washington in Seattle, have now found that neurons in the posterior parietal lobe play an important role in the conversion of the landscape stimuli into a control signal for the eye muscles.

"By means of electrophysiological recordings, we have shown that nerve cells in the so-called MSTd area combine information about the motion of the on the retina with the velocity of eye movements," Lukas Brostek from LMU – first author of the study – explains. Moreover, how this is done clearly differs from cell to cell – thereby enabling the generation of completely new signals. Using computer models, the researchers demonstrated that the observed distribution of signal combinations corresponds exactly to the one required to calculate the velocity of the ambient scene. This is the information the brain ultimately requires to control eye movements.

Several areas of the brain are involved in the control of the optokinetic reflex. The necessary information processing includes essentially three steps: In the first step, the speed of a visual stimulus on the retina is calculated. In the second, the proper motion is combined with this information to obtain the environmental velocity. This is the process that the researchers were able to localize in the brain. "The neurons whose activity we have recorded provide the basis for the final step – the unconscious control of . In this way, they ensure that our match the pace of environmental motion and that we can recognize the passing scenery instead of seeing it blurred," Glasauer says.

Explore further: Clear vision despite a heavy head: Model explains the choice of simple movements

More information: Lukas Brostek, Ulrich Büttner, Michael J. Mustari, and Stefan Glasauer. "Eye Velocity Gain Fields in MSTd during Optokinetic Stimulation." Cereb. Cortex first published online February 20, 2014 DOI: 10.1093/cercor/bhu024

Related Stories

Lining up our sights

March 24, 2014

Neurologists at Ludwig Maximilian University of Munich have studied the role of the vestibular system, which controls balance, in optimizing how we direct our gaze. The results could lead to more effective rehabilitation ...

Looking at something can change our perception of time

March 25, 2014

Human eyes are constantly moving. Most people make more than 10,000 eye movements every hour – adding up to more than 160,000 in an average waking day. Many of these eye movements are quite reflexive. Something catches ...

Recommended for you

New insights on how cocaine changes the brain

November 25, 2015

The burst of energy and hyperactivity that comes with a cocaine high is a rather accurate reflection of what's going on in the brain of its users, finds a study published November 25 in Cell Reports. Through experiments conducted ...

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.