Good bacteria armed with antibiotic resistance protect gut microbiome

June 12, 2014

Researchers from Case Western Reserve University in Cleveland have discovered that populating the gastrointestinal (GI) tracts of mice with Bacteroides species producing a specific enzyme helps protect the good commensal bacteria from the harmful effects of antibiotics. Their research is published ahead of print in Antimicrobial Agents and Chemotherapy.

Antibiotics are powerful weapons against pathogens, but most are relatively indiscriminate, killing the , along with the bad. Thus, they may render patients vulnerable to invasion, particularly by virulent, antibiotic-resistant pathogens that frequently populate hospitals.

The novel aspect of the research is that the enzyme produced by these bacteria, beta-lactamase, is a major cause of , says first author, Usha Stiefel. Interestingly, the enzyme is not only protecting the bacteria that produce it but also the rest of the bacteria making up the intestinal microbiome.

In the study, the investigators established populations of beta-lactamase producing Bacteroides in some mice, but not others. They then gave all the mice ceftriaxone, a beta-lactam antibiotic, for three days and then oral doses of vancomycin-resistant enterococcus, or Clostridium difficile, both of which are virulent GI pathogens.

The mice that had been populated with Bacteroides maintained their diverse species of commensal gut bacteria, free of pathogens, while the control mice saw their commensals decimated by , enabling establishment of the pathogens.

"When patients in the hospital or nursing home setting receive antibiotics, it is doubly dangerous when they lose their native colonic bacteria, because healthcare settings are full of resistant or particularly , and so patients are especially vulnerable to acquiring these bacteria within their intestinal tracts," says Stiefel.

Since the Bacteroides, which comprise roughly one quarter of the intestinal microbiome, are absent elsewhere in the body, the investigators believe that the beta-lactamase will not interfere with treatment of infections in other organ systems, such as in the respiratory tract, or the blood, explains Stiefel.

"The results of our study are exciting because they show how it might be possible to take antibiotics without suffering from the loss of your colonic microbiome and then becoming colonized by virulent pathogens," says Stiefel. For example, beta-lactamase enzymes could be given orally as drugs, to protect the from systemic antibiotics. Alternatively, as with the mice, patients' GI tracts might be populated with antibiotic-degrading .

One weakness of the strategy is that while it could protect against acquiring a GI infection, C. difficile, for example, it could not be used to combat such an infection.

"The recognition of the importance of an intact and diverse microbiome has probably best been demonstrated by the successful treatment of Clostridium difficile colitis by fecal microbiota transplantation, or 'stool transplant,'" says Stiefel. "If you have an intact intestinal microbiome, you simply are going to be resistant to acquiring many types of infection."

"If we can find ways to preserve the microbiome in hospitalized patients who are receiving antibiotics, we are on our way to preventing a large proportion of hospital-acquired infections," says Stiefel.

Explore further: Good bacteria may expunge vancomycin-resistant bacteria from your gut

More information: The manuscript can be found online. The final version of the article is scheduled for the August 2014 issue of Antimicrobial Agents and Chemotherapy.

Related Stories

Recommended for you

Monkeys in Asia harbor virus from humans, other species

November 19, 2015

When it comes to spreading viruses, bats are thought to be among the worst. Now a new study of nearly 900 nonhuman primates in Bangladesh and Cambodia shows that macaques harbor more diverse astroviruses, which can cause ...

One-step test for hepatitis C virus infection developed

November 14, 2015

UC Irvine Health researchers have developed a cost-effective one-step test that screens, detects and confirms hepatitis C virus (HCV) infections. Dr. Ke-Qin Hu, director of hepatology services, will present findings at the ...

Computer model reveals deadly route of Ebola outbreak

November 10, 2015

Using a novel statistical model, a research team led by Columbia University's Mailman School of Public Health mapped the spread of the 2014-2015 Ebola outbreak in Sierra Leone, providing the most detailed picture to date ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.