Researchers discover new method to reduce disease-causing inflammation

by James Hataway

Researchers at the University of Georgia report in the Journal of Biological Chemistry that an enzyme known as Tumor Progression Locus 2, or Tpl2, plays a key role in directing and regulating several important components of the body's immune system. Their discovery may one day lead to new treatments for many common autoimmune diseases.

"We know that plays a serious role in a number of conditions, and we need better methods for controlling ," said Wendy Watford, assistant professor of infectious diseases in UGA's College of Veterinary Medicine and principal investigator for the study. "Our laboratory is searching for ways to disrupt the fundamental cellular processes that cause inflammation and disease."

The human is an extraordinarily complex system of cells, proteins, tissues and organs that, when everything works properly, search out and destroy disease-causing toxins and pathogens like bacteria and viruses. But sometimes it becomes confused, and the microscopic troops that normally attack only invaders turn their weapons on healthy tissues.

The resulting inflammation caused by wayward defense cells is associated with a number of and conditions, including diabetes, obesity, depression, heart disease, stroke, respiratory disease and certain cancers.

Watford and her colleagues conducted tests with genetically modified mice lacking the Tpl2 enzyme in which they stimulated the animal's immune system and observed the behavior of several proteins known as chemokine receptors.

Chemokines act like a dispatcher, alerting the immune system's army of white blood cells to potential threats and directing them to problem areas.

The researchers found activity of three chemokine receptors—known as CCR1, CCR2 and CCR5—were reduced in Tpl2 negative mice. With these proteins operating at reduced capacity, fewer of the commonly associated with autoimmune disease are able to accumulate at inflamed tissues where they can attack healthy tissue.

While reducing Tpl2 expression may ease the burden of many painful and debilitating disorders, it also weakens the immune system, making it harder for the body to fight off bacteria, viruses, parasites and .

"A number of laboratories throughout the world have researched the inhibition of chemokine receptors as a potential therapy for a variety of disorders," Watford said. "We still face a number of hurdles, but we hope that this may one day serve as the foundation for a new approach to disease treatment."

The research group is planning additional tests using mouse models that mimic the symptoms of rheumatoid arthritis to see if Tpl2 inhibition will reduce inflammation and ease symptoms.

"This is an emerging field," Watford said. "We have a lot of work to do, but many of our preliminary results are promising."

add to favorites email to friend print save as pdf

Related Stories

Immune cell death defects linked to autoimmune diseases

Jan 23, 2013

Melbourne researchers have discovered that the death of immune system cells is an important safeguard against the development of diseases such as type 1 diabetes, rheumatoid arthritis and lupus, which occur ...

Recommended for you

A better biomonitor for children with asthma

Dec 10, 2014

For the firefighters and rescue workers conducting the rescue and cleanup operations at Ground Zero from September 2001 to May 2002, exposure to hazardous airborne particles led to a disturbing "WTC cough"—obstructed ...

New insight into risk of Ankylosing Spondylitis

Dec 09, 2014

Scientists at the University of Southampton have discovered variations in an enzyme belonging to the immune system that leaves individuals susceptible to Ankylosing Spondylitis.

Novel approach to treating asthma: Neutralize the trigger

Dec 03, 2014

Current asthma treatments can alleviate wheezing, coughing and other symptoms felt by millions of Americans every year, but they don't get to the root cause of the condition. Now, for the first time, scientists ...

Inflammatory discovery sheds new light on skin disease

Dec 02, 2014

Inflammatory skin diseases such as psoriasis may result from abnormal activation of cell death pathways previously believed to suppress inflammation, a surprise finding that could help to develop new ways ...

User comments

Adjust slider to filter visible comments by rank

Display comments: newest first

tadchem
not rated yet Jun 16, 2014
It has been established that lipopolysaccharides (from the cell walls of Gram-negative bacteria which inhabit the digestive systems of most people) are extremely potent inflammatory agents in mammals.
It would be useful to determine whether control of these Gram-negative bacteria can be used to manage chronic inflammation.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.