MicroRNA that blocks bone destruction could offer new therapeutic target for osteoporosis

June 25, 2014

UT Southwestern cancer researchers have identified a promising molecule that blocks bone destruction and, therefore, could provide a potential therapeutic target for osteoporosis and bone metastases of cancer.

The molecule, miR-34a, belongs to a family of small molecules called microRNAs (miRNAs) that serve as brakes to help regulate how much of a protein is made, which in turn, determines how cells respond.

UT Southwestern researchers found that mice with higher than normal levels of miR-34a had increased and reduced bone breakdown. This outcome is achieved because miR-34a blocks the development of bone-destroying cells called osteoclasts, which make the bone less dense and prone to fracture.

"This new finding may lead to the development of miR-34a mimics as a new and better treatment for osteoporosis and cancers that metastasize to the bone," said senior author Dr. Yihong Wan, Assistant Professor of Pharmacology and member of the UT Southwestern Harold C. Simmons Cancer Center.

Her team found that injecting nanoparticles containing an artificial version, or mimic, of miR-34a into a mouse with post-menopausal osteoporosis decreased  bone loss. "Interestingly, the mouse miR-34a is identical to that in humans, which means that our findings may apply to humans as well," said Dr. Wan, Virginia Murchison Linthicum Scholar in Medical Research at UT Southwestern.

The study is published online in the journal Nature.

High levels of and reduced bone density caused by excessive osteoclasts are characteristic of osteoporosis, a common bone disease in which bones become fragile and susceptible to fracture. This condition disproportionately affects seniors and women, and leads to more than 1.5 million fractures annually.

miR-34a could have an additional therapeutic application, offering protection from in a variety of cancers, Dr. Wan noted. Bone metastases happen when cells travel from the primary tumor site to the bone, establishing a new cancer location. Researchers saw that injecting the miR-34a mimic in mice could prevent the metastasis of breast and skin cancer cells specifically to bone, mainly by disarming the metastatic niche in bone.

Co-author Dr. Joshua Mendell, Professor of Molecular Biology at UT Southwestern and member of the UT Southwestern Harold C. Simmons Cancer Center, noted that his laboratory previously showed that miR-34a can directly suppress the growth of .

 "We were very excited to see, through this collaborative work with Dr. Wan's group, that miR-34a can also suppress metastasis.  Thus, miR-34a-based therapy could provide multiple benefits for cancer patients," said Dr. Mendell, CPRIT Scholar in Cancer Research. CPRIT is the Cancer Prevention and Research Institute of Texas, which provides voter-approved state funds for groundbreaking cancer research and prevention programs and services in Texas.

Explore further: Common cancer gene sends death order to tiny killer

Related Stories

Common cancer gene sends death order to tiny killer

May 31, 2007

Scientists at Johns Hopkins have discovered one way the p53 gene does what it's known for—stopping the colon cancer cells. Their report will be published in the June 8 issue of Molecular Cell.

MicroRNA suppresses prostate cancer stem cells and metastasis

January 16, 2011

A small slice of RNA inhibits prostate cancer metastasis by suppressing a surface protein commonly found on prostate cancer stem cells. A research team led by scientists at The University of Texas MD Anderson Cancer Center ...

In obesity, a micro-RNA causes metabolic problems

September 20, 2012

Scientists have identified a key molecular player in a chain of events in the body that can lead to fatty liver disease, Type II diabetes and other metabolic abnormalities associated with obesity. By blocking this molecule, ...

Inflammation mobilizes tumor cells

March 19, 2014

Ludwig Maximilian University of Munich researchers have discovered a novel feedback mechanism that provides a mechanistic link between chronic inflammation and carcinogenesis.

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

Strict diet combats rare progeria aging disorders

August 25, 2016

Mice with a severe aging disease live three times longer if they eat thirty percent less. Moreover, they age much healthier than mice that eat as much as they want. These are findings of a joint study being published today ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.