Unlocking the potential of stem cells to repair brain damage

by Sandra Hutchinson
Unlocking the potential of stem cells to repair brain damage
QUT researcher Rachel Okolicsanyi is looking at using stem cells to repair brain damage.

(Medical Xpress)—A QUT scientist is hoping to unlock the potential of stem cells as a way of repairing neural damage to the brain.

Rachel Okolicsanyi, from the Genomics Research Centre at QUT's Institute of Health and Biomedical Innovation, said unlike other cells in the body which were able to divide and replicate, once most types of died, the damage was deemed irreversible.

Ms Okolicsanyi is manipulating from to produce a population of cells that can be used to treat .

"My research is a step in proving that stem cells taken from the bone marrow can be manipulated into , or that have the potential to replace, repair or treat brain damage," she said.

Ms Okolicsanyi's research has been published in Developmental Biology journal, and outlines the potential stem cells have for brain damage repair.

"What I am looking at is whether or not stem cells from the bone marrow have the potential to differentiate or mature into neural cells," she said.

"Neural cells are those cells from the brain that make everything from the structure of the brain itself, to all the connections that make movement, voice, hearing and sight possible."

Ms Okolicsanyi's research is looking at heparin sulfate proteoglycans - a family of proteins found on the surface of all cells.

"What we are hoping is that by manipulating this particular family of proteins we can encourage the stem cells to show a higher percentage of neural markers indicating that they could mature into neural cells rather than what they would normally do, which is form into bone, cartilage and fat," she said.

"We will manipulate these cells by modifying the surrounding environment. For example we will add chemicals such as complex salts and other commonly found biological chemicals to feed these cells and this will either inhibit or encourage cellular processes."

Ms Okolicsanyi said by doing this, it would be possible to see the different reactions stem cells had to particular chemicals and find out whether these chemicals could increase or decrease the neural markers in the cells.

"The proteins that we are interested in are almost like a tree," she said.

"They have a core protein that is attached to the cell surface and they have these heparin sulfate chains that branch off.

"So when the chemicals we add influence the stem cell in different ways, it will help us understand the interactions between proteins and the resulting changes in the cell.

"In the short-term it is proof that simple manipulations can influence the stem cell and in the long-term it is about the possibility of increasing the neural potential of these stem cells."

Ms Okolicsanyi said the big picture plan was to be able to introduce stem cells into the brain that would be able to be manipulated to repair damaged brain cells.

"The idea, for example, is that in stroke patients where the patient loses movement, speech or control of one side of their face because the 's electrical current is impaired, that these stem cells will be able to be introduced and help the electrical current reconnect by bypassing the damaged cells."

Ms Okolicsanyi's paper is titled "Mesenchymal , neural linage potential, heparin sulfate proteogylcans and the matrix."

More information: "Rachel K. Okolicsanyi, Lyn R. Griffiths, Larisa M. Haupt, Mesenchymal stem cells, neural lineage potential, heparan sulfate proteoglycans and the matrix," Developmental Biology, Volume 388, Issue 1, 1 April 2014, Pages 1-10, ISSN 0012-1606, dx.doi.org/10.1016/j.ydbio.2014.01.024.

add to favorites email to friend print save as pdf

Related Stories

Stem cells from teeth can make brain-like cells

Apr 30, 2014

(Medical Xpress)—University of Adelaide researchers have discovered that stem cells taken from teeth can grow to resemble brain cells, suggesting they could one day be used in the brain as a therapy for stroke.

There's life after radiation for brain cells

Aug 12, 2013

Scientists have long believed that healthy brain cells, once damaged by radiation designed to kill brain tumors, cannot regenerate. But new Johns Hopkins research in mice suggests that neural stem cells, the body's source ...

Tracking nanodiamond-tagged stem cells

Aug 05, 2013

A method that is used to track the fate of a single stem cell within mouse lung tissue is reported in a study published online this week in Nature Nanotechnology. The method may offer insights into the factors that determ ...

Recommended for you

A hybrid vehicle that delivers DNA

16 hours ago

A new hybrid vehicle is under development. Its performance isn't measured by the distance it travels, but rather the delivery of its cargo: vaccines that contain genetically engineered DNA to fight HIV, cancer, ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.