Scripps Florida scientists pinpoint how genetic mutation causes early brain damage

June 18, 2014
Gavin Rumbaugh, Ph.D., is an associate professor in the Department of Neuroscience at The Scripps Research Institute, Florida campus. Credit: Photo courtesy of The Scripps Research Institute.

Scientists from the Florida campus of The Scripps Research Institute (TSRI) have shed light on how a specific kind of genetic mutation can cause damage during early brain development that results in lifelong learning and behavioral disabilities. The work suggests new possibilities for therapeutic intervention.

The study, which focuses on the role of a gene known as Syngap1, was published June 18, 2014, online ahead of print by the journal Neuron. In humans, in Syngap1 are known to cause devastating forms of and epilepsy.

"We found a sensitive cell type that is both necessary and sufficient to account for the bulk of the behavioral problems resulting from this mutation," said TSRI Associate Professor Gavin Rumbaugh, who led the study. "Because we found the root biological cause of this genetic brain disorder, we can now shift our research toward developing tailor-made therapies for people affected by Syngap1 mutations."

In the study, Rumbaugh and his colleagues used a mouse model to show that mutations in Syngap1 damage the of a kind of neuron known as glutamatergic neurons in the young forebrain, leading to intellectual disability. Higher cognitive processes, such as language, reasoning and memory arise in children as the forebrain develops.

Repairing damaging Syngap1 mutations in these specific neurons during development prevented cognitive abnormalities, while repairing the gene in other kinds of neurons and in other locations had no effect.

Rumbaugh noted prenatal diagnosis of some infant genetic disorders is on the horizon. Technological advances in genetic sequencing allow for individual genomes to be scanned for damaging mutations; it is possible to scan the entire genome of a child still in the womb. "Our research suggests that if Syngap1 function can be fixed very early in development, this should protect the brain from damage and permanently improve cognitive function," said TSRI Research Associate Emin Ozkan, a first author of the study, along with TSRI Research Associate Thomas Creson. "In theory, patients then wouldn't have to be subjected to a lifetime of therapies and worry that the drugs might stop working or have side effects from chronic use."

Mutations to Syngap1 are a leading cause of "sporadic intellectual disability," resulting from new, random mutations arising spontaneously in genes, rather than faulty genes inherited from parents. Intellectual disability affects approximately one to three percent of the population worldwide.

Rumbaugh and his colleagues are continuing to investigate. "Our findings have also identified exciting potential biomarkers in the brain of cognitive failure, allowing us to test new therapeutic strategies in our Syngap1 animal model," said Creson.

Explore further: Uncovering secrets of how intellect and behavior emerge during childhood

More information: "Reduced Cognition in Syngap1 Mutants Is Caused by Isolated Damage within Developing Forebrain Excitatory Neurons" Neuron, 2014.

Related Stories

Recommended for you

New insights on how cocaine changes the brain

November 25, 2015

The burst of energy and hyperactivity that comes with a cocaine high is a rather accurate reflection of what's going on in the brain of its users, finds a study published November 25 in Cell Reports. Through experiments conducted ...

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jun 21, 2014
Read your research.
What is the critical window for this?
Go Gator Scrippts Florida team.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.