Balancing strategy to lateral impact in a rat Rattus norregicus

June 3, 2014

The balancing strategy to lateral impact in a rat is closely related to the striked position of the body. The research result can be inspired to improve the robustness of bionic robot. This was found by Dr. JI Aihong and his group from Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics. This work, entitled "Balancing strategy to lateral impact in a rat Rattus norregicus", was published in Chinese Science Bulletin (In Chinese),2014, Vol 59(13) issue.

The center of mass(COM) of animal's body always falls inside the composed polygon of multiple supporting legs during . However, under the interference of environment such as lateral strike and lateral storm, the COM may exceed its security domain. How does animal adjust its movement pattern to balance the outside disturbance? It is necessary to study the animal's balancing strategy to lateral impact to reveal the mechanism of animal keeping stability when locomotion.

In this paper a rat Rattus norregicus was focused to study its balancing strategy to lateral impact. A pendulum was used to strike lateral thorax and lateral abdomen of the animal. Locomotion behavior was recorded by a and ground reaction forces were measured by 3-dimensional forces sensors array synchronously during the whole progress of impact and adjustment (Fig 1).

The result showed that the balancing strategy to lateral impact in a rat was closely related to the striked position of the body. The rat bent flexible body to absorb the impact energy when encountering the lateral thorax strike, and it resisted the impact force and torque through its side-sway and left leg supporting when encountering the lateral abdomen strike. Animal spent less time on side-sway than on body bending during imergency buffer, but it spent more time on side-sway than on body bending when reverting to original locomotion gait. Balancing strategy to lateral impact in a rat can be inspired to improve the robustness of bionic robot.

Explore further: Getting a grip on sleep

More information: Ji A H, Lei Y F, Wang Z Y, et al. Balancing strategy to lateral impact in a rat Rattus norregicus (in Chinese). Chin Sci Bull (Chin Ver), 2014, 59: 1249, DOI: 10.1360/972013-1274 http://csb.scichina.com:8080/kxtb/CN/10.1360/972013-1274

Related Stories

Getting a grip on sleep

May 14, 2013

All mammals sleep, as do birds and some insects. However, how this basic function is regulated by the brain remains unclear. According to a new study by researchers from the RIKEN Brain Science Institute, a brain region called ...

Recommended for you

New mechanism discovered behind infant epilepsy

September 3, 2015

Scientists at Karolinska Institutet and Karolinska University Hospital in Sweden have discovered a new explanation for severe early infant epilepsy. Mutations in the gene encoding the protein KCC2 can cause the disease, hereby ...

Neuron responsible for alcoholism found

September 2, 2015

Scientists have pinpointed a population of neurons in the brain that influences whether one drink leads to two, which could ultimately lead to a cure for alcoholism and other addictions.

Deciphering the olfactory receptor code

August 31, 2015

In animals, numerous behaviors are governed by the olfactory perception of their surrounding world. Whether originating in the nose of a mammal or the antennas of an insect, perception results from the combined activation ...

Scientists see motor neurons 'walking' in real time

September 2, 2015

When you're taking a walk around the block, your body is mostly on autopilot—you don't have to consciously think about alternating which leg you step with or which muscles it takes to lift a foot and put it back down. That's ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.