Synaptic levels of clathrin protein are important for neuronal plasticity

June 19, 2014
Researcher Artur Llobet

Researchers of the group of cellular and molecular neurobiology of the Bellvitge Biomedical Research Institute (IDIBELL) and the University of Barcelona, led by researcher Artur Llobet, have shown that synaptic levels of the protein clathrin are a determinant factor for synaptic plasticity of neurons.

Chemical synapses and synaptic vesicular transmission cycle

Neurons transmit information in a specialized contact points called synapses. These structures consist of two elements: the presynaptic one, information donor, and postsynaptic, which receives the information. In the case of the presynaptic terminal, information is stored in vesicles containing neurotransmitters. When a stimulus arrives at the presynaptic terminal releases a vesicle by exocytosis. But to prevent the terminal to run out vesicles, immediately after exocytosis, occurs . This coupling between exo and endocytosis defines what is known as vesicular synaptic vesicle cycle and is essential for neurons to release information correctly.

The vesicular cycle must adapt to constant changes in , and thus is a determinant of neuronal plasticity.

The dogma of the clathrin

Study investigators have sought to determine the role of clathrin in synaptic plasticity. "This protein is involved in all processes of endocytosis in all cells of the body and until now it was thought that it presents as abundant levels that it wouldn't pose a limiting factor" explained Artur Llobet.

"Our study," adds the researcher "questions this dogma because we found that in periods of intense neuronal stimulation, but within physiological levels, presynaptic levels of clathrin decrease reversibly. Ie levels clathrin are a dynamic property of the terminals".

"This is not surprising, what it is, is that a drop of only 20% are able to alter synaptic function. Specifically, this reduction reduces the number of vesicles that can be released, which has a direct action on exocytosis and therefore on the release of information. "

"In short," said Llobet "we showed that clathrin levels are a limiting factor for , thus contributes to ." Article's reference

Explore further: Amplifying communication between neurons

More information: Francisco J. López-Murcia, Stephen J. Royle and Artur Llobet. Presynaptic Clathrin Levels Are a Limiting Factor for Synaptic Transmission. The Journal of Neuroscience. DOI: 10.1523/JNEUOSCI.5081-13.2014

Related Stories

Amplifying communication between neurons

January 17, 2014

Neurons send signals to each other across small junctions called synapses. Some of these signals involve the flow of potassium, calcium and sodium ions through channel proteins that are embedded within the membranes of neurons. ...

Loose coupling between calcium channels and sensors

February 6, 2014

In research published in this week's online edition of Science, postdoc Nicholas Vyleta and Professor Peter Jonas of the Institute of Science and Technology Austria uncover the existence of loose coupling between calcium ...

New regulator discovered for information transfer in the brain

June 20, 2013

The protein mSYD1 has a key function in transmitting information between neurons. This was recently discovered by the research group of Prof Peter Scheiffele at the Biozentrum, University of Basel. The findings of the investigations ...

Recommended for you

Rat brain atlas provides MR images for stereotaxic surgery

October 21, 2016

Boris Odintsov, senior research scientist at the Biomedical Imaging Center at the Beckman Institute for Advanced Science and Technology at the University of Illinois in Urbana-Champaign, and Thomas Brozoski, research professor ...

ALS study reveals role of RNA-binding proteins

October 20, 2016

Although only 10 percent of amyotrophic lateral sclerosis (ALS) cases are hereditary, a significant number of them are caused by mutations that affect proteins that bind RNA, a type of genetic material. University of California ...

Imaging technique maps serotonin activity in living brains

October 20, 2016

Serotonin is a neurotransmitter that's partly responsible for feelings of happiness and for mood regulation in humans. This makes it a common target for antidepressants, which block serotonin from being reabsorbed by neurons ...

Overcoming egocentricity increases self-control

October 19, 2016

Neurobiological models of self-control usually focus on brain mechanisms involved in impulse control and emotion regulation. Recent research at the University of Zurich shows that the mechanism for overcoming egocentricity ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.