Synaptic levels of clathrin protein are important for neuronal plasticity

Researcher Artur Llobet

Researchers of the group of cellular and molecular neurobiology of the Bellvitge Biomedical Research Institute (IDIBELL) and the University of Barcelona, led by researcher Artur Llobet, have shown that synaptic levels of the protein clathrin are a determinant factor for synaptic plasticity of neurons.

Chemical synapses and synaptic vesicular transmission cycle

Neurons transmit information in a specialized contact points called synapses. These structures consist of two elements: the presynaptic one, information donor, and postsynaptic, which receives the information. In the case of the presynaptic terminal, information is stored in vesicles containing neurotransmitters. When a stimulus arrives at the presynaptic terminal releases a vesicle by exocytosis. But to prevent the terminal to run out vesicles, immediately after exocytosis, occurs . This coupling between exo and endocytosis defines what is known as vesicular synaptic vesicle cycle and is essential for neurons to release information correctly.

The vesicular cycle must adapt to constant changes in , and thus is a determinant of neuronal plasticity.

The dogma of the clathrin

Study investigators have sought to determine the role of clathrin in synaptic plasticity. "This protein is involved in all processes of endocytosis in all cells of the body and until now it was thought that it presents as abundant levels that it wouldn't pose a limiting factor" explained Artur Llobet.

"Our study," adds the researcher "questions this dogma because we found that in periods of intense neuronal stimulation, but within physiological levels, presynaptic levels of clathrin decrease reversibly. Ie levels clathrin are a dynamic property of the terminals".

"This is not surprising, what it is, is that a drop of only 20% are able to alter synaptic function. Specifically, this reduction reduces the number of vesicles that can be released, which has a direct action on exocytosis and therefore on the release of information. "

"In short," said Llobet "we showed that clathrin levels are a limiting factor for , thus contributes to ." Article's reference

More information: Francisco J. López-Murcia, Stephen J. Royle and Artur Llobet. Presynaptic Clathrin Levels Are a Limiting Factor for Synaptic Transmission. The Journal of Neuroscience. DOI: 10.1523/JNEUOSCI.5081-13.2014

Related Stories

Amplifying communication between neurons

date Jan 17, 2014

Neurons send signals to each other across small junctions called synapses. Some of these signals involve the flow of potassium, calcium and sodium ions through channel proteins that are embedded within the ...

Loose coupling between calcium channels and sensors

date Feb 06, 2014

In research published in this week's online edition of Science, postdoc Nicholas Vyleta and Professor Peter Jonas of the Institute of Science and Technology Austria uncover the existence of loose coupling betwee ...

Gene called flower missing link in vesicle uptake in neurons

date Sep 03, 2009

As part of the intricate ballet of synaptic transmission from one neuron to the next, tiny vesicles - bubbles containing the chemical neurotransmitters that make information exchange possible -- travel to the tip of neurons ...

Recommended for you

How your brain knows it's summer

date 4 hours ago

Researchers led by Toru Takumi at the RIKEN Brain Science Institute in Japan have discovered a key mechanism underlying how animals keep track of the seasons. The study, published in Proceedings of the Na ...

His and her pain circuitry in the spinal cord

date 8 hours ago

New research released today in Nature Neuroscience reveals for the first time that pain is processed in male and female mice using different cells. These findings have far-reaching implications for our ba ...

Fight or flight neural pathway mapped in mouse brain

date Jun 26, 2015

(Medical Xpress)—A team of researchers working at the Chinese Academy of Sciences has succeeded in mapping the neural pathway that is involved when a mouse sees something frightening. In their paper published ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.