Taking tissue regeneration beyond state-of-the-art

by Josephine Dionisappu

Researchers in the United Kingdom and Malaysia are developing a new class of injectable material that stimulates stem cells to regenerate damaged tissue and form new blood vessels, heart and bone tissue.

Their aim is to produce radical new treatments that will reduce the need for invasive surgery, optimise recovery and reduce the risk of undesirable scar .

The research, which brings together expertise at the University of Nottingham and its Malaysia Campus (UNMC), is part of the "Rational Bioactive Materials Design for Tissue Generation" or "Biodesign" project – an €11m EU-funded initiative involving 21 research teams from across Europe.

"This research heralds a step-change in approaches to ," says Professor Kevin Shakesheff, Head of the School of Pharmacy at the University of Nottingham's UK campus. "Current biomaterials are poorly suited to the needs of and regenerative medicine. Our aim is to develop new materials and medicines that will stimulate tissue regeneration rather than wait for the body to start the process itself."

UNMC is building on its expertise in nanotechnology for drug delivery. "Here in Malaysia we are looking at synthesising microparticles that can be injected directly into a patient at the site of injury to promote tissue re-growth," says Professor Andrew Morris, an expert in transdermal drug delivery and Head of the School of Pharmacy (UNMC). "These microparticles would act as a scaffold to encourage regrowth in bone tissue, skeletal muscle and potentially even cardiac muscle."

This research is going to have a significant impact on patients," says Dr. Nashiru Billa who is the Associate Dean for Research in the Faculty of Science. "In future, you could include anti-cancer drugs in the delivery system that would not only lead to the growth of the tissue but would also help kill cancer cells within the ."

Provided by University of Nottingham Malaysia Campus

4.3 /5 (3 votes)
add to favorites email to friend print save as pdf

Related Stories

Taking tissue regeneration beyond the state-of-the-art

Jul 06, 2012

The University of Nottingham has begun the search for a new class of injectable materials that will stimulate stem cells to regenerate damaged tissue in degenerative and age related disorders of the bone, muscle and heart.

Materials scientists turn to collagen

Jun 05, 2014

(Phys.org) —Miniature scaffolds made from collagen – the 'glue' that holds our bodies together – are being used to heal damaged joints, and could be used to develop new cancer therapies or help repair ...

Recommended for you

Testing time for stem cells

1 hour ago

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

20 hours ago

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments