Aqueous two-phase systems enable multiplexing of homogeneous immunoassays

July 16, 2014
Aqueous two-phase systems enable multiplexing of homogeneous immunoassays
Multiphase polymer systems are used to confine unique antibody-conjugated beads that bind with high sensitivity and specificity to plasma protein biomarkers, eliciting amplified luminescent signals. The signal intensity from the beads is proportional to the levels of disease biomarkers in the blood plasma. If protein levels exceed the clinical threshold, the patients are identified as having the disease. Credit: Technology

A new protein biomarker test platform developed by researchers at the University of Michigan and Indiana University promises to improve diagnostic testing. The test can accurately and simultaneously measure multiple proteins that indicate the presence of diseases like graft-versus-host disease (bone marrow transplant rejection) in only two hours, no washing steps, and using only a minute volume of blood plasma. A report on this new technology can be found online in the journal Technology.

The protein test uses a micropatterning method developed in Shuichi Takayama's Micro/Nano/Molecular Biotechnology Lab. "Just as oil and water remain immiscible, we use two aqueous solutions that do not mix with each other," said Dr. Takayama, Professor of Biomedical Engineering and Macromolecular Science and Engineering. "Interestingly, these solutions can be patterned into arrays, whereas standard no-wash protein test reagents normally just mix together in solution. This novel capability makes it possible, for the first time, to measure multiple diagnostic proteins at a time in a no-wash format test."

To perform the assay, a few microliters of blood plasma is mixed with poly(ethylene glycol) and added to a microwell in a custom 384-well microplate. Next, microdroplets of dextran, containing complimentary pairs of antibody-beads, are dispensed into microbasins within the sample well. During a two-hour incubation, target plasma protein biomarkers diffuse from the poly() phase to the dextran droplets and become sandwiched by the antibody beads. The microplate is then read on a commercially available plate reader.

The team demonstrated the effectiveness of their bioassay by measuring biomarkers from cytokine-stimulated cells, as well as from the plasma of transplant patients. Detecting levels of proinflammatory cytokines and chemokines in can be crucial in the diagnosis of (GVHD) - the leading cause of death among allogeneic patients.

"We envision that our user-friendly and highly accurate platform will be widely used by academic and clinical researchers for diagnostics as well as other applications," said Arlyne Simon, Ph.D., the lead author on this publication. "To ease the adoption of our technology into research and clinical labs, we designed custom microplates that can be analyzed by commercially available plate readers."

Explore further: Biomarker detects graft-versus-host-disease in cancer patients after bone marrow transplant

More information: Arlyne B. Simon et al, Technology 02, 176 (2014). DOI: 10.1142/S2339547814500150

Related Stories

Better matching benefits bone marrow recipients

June 5, 2014

A new test for genetic matching in bone marrow transplantation developed by a West Australian specialist is showing dramatic improvements in transplant survival rates according to a Brazilian study.

Recommended for you

Flu study, on hold, yields new vaccine technology

September 2, 2015

Vaccines to protect against an avian influenza pandemic as well as seasonal flu may be mass produced more quickly and efficiently using technology described today by researchers at the University of Wisconsin-Madison in the ...

We've all got a blind spot, but it can be shrunk

August 31, 2015

You've probably never noticed, but the human eye includes an unavoidable blind spot. That's because the optic nerve that sends visual signals to the brain must pass through the retina, which creates a hole in that light-sensitive ...

Biologists identify mechanisms of embryonic wound repair

August 31, 2015

It's like something out of a science-fiction movie - time-lapse photography showing how wounds in embryos of fruit flies heal themselves. The images are not only real; they shed light on ways to improve wound recovery in ...

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

Fertilization discovery: Do sperm wield tiny harpoons?

August 26, 2015

Could the sperm harpoon the egg to facilitate fertilization? That's the intriguing possibility raised by the University of Virginia School of Medicine's discovery that a protein within the head of the sperm forms spiky filaments, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.