Researchers learn how beryllium causes deadly lung disease

Using exquisitely detailed maps of molecular shapes and the electrical charges surrounding them, researchers at National Jewish Health have discovered how the metal beryllium triggers a deadly immune response in the lungs. In the July 3, 2014, issue of the journal Cell John Kappler, PhD, and his colleagues show how a genetic susceptibility to the disease creates a molecular pocket in an immune system protein, which captures beryllium ions and triggers an inflammatory response in the lungs. The findings describe for the first time an immune response that lies somewhere between classic forms of allergic hypersensitivity and autoimmunity.

"The does not actually 'see' beryllium," said Dr. Kappler. "The beryllium changes the shape of otherwise innocuous self-peptides so that T cells recognize them as foreign and dangerous."

Beryllium is a relatively rare metal whose unique combination of strength and lightness makes it invaluable for various industrial uses, ranging from triggers for nuclear bombs to satellite components, computers and cell phones. It can cause disease when people who work with the metal inhale particles that become lodged in the lungs. People who develop chronic beryllium disease can have varied courses of disease, from stable with medications to progressive lung damage and death.

Not everyone who works with the metal becomes ill. About 85 percent of people who develop chronic beryllium disease have an known as HLA-DP2. Cells throughout the body use this molecule to tell the immune system what is going on inside of them. HLA-DP2 sits on the cell surface holding small protein fragments taken from the cell's interior. Immune system sentinels known as T cells bump against HLA-DP2 and its displayed protein fragment. If the protein fragment is derived from the body's own proteins, the T cell ignores it; if it is a foreign peptide, say from a bacterium, virus or other pathogen, the T cell sounds the alarm and triggers an immune response.

HLA-DP2 differs from most other peptide-presenting proteins by a single amino acid. Dr. Kappler and his colleagues performed a series of highly detailed genetic, x-ray diffraction, molecular binding and electrostatic studies to show how this single amino acid can combine with other amino acids from HLA-DP2 and some of its bound self-peptides to create a unique molecular pocket that captures a single beryllium ion along with a sodium ion.

The peptides that bind to HLA-DP2 come from the body's own tissues and normally elicit no immune response. With the and sodium firmly lodged in the molecular pocket, however, those peptides have a very slightly altered shape and electrical charge, which roving T cells recognize as foreign and dangerous. They initiate an immune response that causes inflammation and scarring in the lungs.

"This response resembles allergic hypersensitivity in that a metal ion causes an allergic reaction," said Dr. Kappler. "But it also resembles autoimmunity in that the immune system is mounting an attack against a self-peptide. It is a new form of , and may lead to new therapeutic strategies to treat and prevent the disease."

add to favorites email to friend print save as pdf

Related Stories

The molecular heart of celiac disease revealed

Apr 29, 2014

Australian, US and Dutch researchers have determined the molecular details of the interaction between the immune system and gluten that triggers celiac disease. Their work opens the way to potential treatments ...

Research gives new insight into coeliac disease

Oct 11, 2012

For the first time, scientists have visualised an interaction between gluten and T-cells of the immune system, providing insight into how coeliac disease, which affects approximately 1 in 133 people, is triggered.

Discovery prompts new theory on cause of autoimmune diseases

May 03, 2010

The recent discovery of a protein fragment capable of causing diabetes in mice has spurred researchers at National Jewish Health and the University of Colorado Denver to propose a new hypothesis about the cause of diabetes ...

Dying cells trigger immunity

May 30, 2014

The immune system produces various types of immune cells—some are pre-programmed to target pathogens that the immune system has previously encountered, while others are 'naive' and retain the ability to ...

Recommended for you

New hay fever blood test nothing to sneeze at

Sep 29, 2014

(Medical Xpress)—Brisbane researchers have developed a blood test that can accurately detect one of the commonest causes of hay fever, paving the way for new treatments.

Geisel researchers contribute to study of trained immunity

Sep 26, 2014

A study published in the journal science provides support for a new—and still controversial—understanding of the immune system. the research was conducted by collaborators in the U.S. and Europe, including Robert Cramer ...

User comments