Researchers find new way to prevent dangerous blood clots

July 3, 2014 by Mark Derewicz
Researchers find new way to prevent dangerous blood clots
Left: normal blood clot. Right: clot in which the enzyme factor XIII was removed from blood sample. As a result of removing fact XIII, red blood cells fell out of the clot, making it 50 percent smaller.

(Medical Xpress)—For the first time, scientists at the UNC School of Medicine have shown that eliminating the enzyme factor XIII reduces the number of red blood cells trapped in a clot, resulting in a 50 percent reduction in the size of the clot.

The finding, featured today in the Journal of Clinical Investigation, has major implications for people at high risk of (DVT), a condition that – together with its deadly cousin – affects 300,000 to 600,000 people in the United States every year. Between 60,000 and 100,000 people die from these conditions every year in the U.S., according to the Centers for Disease Control and Prevention.

"If we can develop a treatment that exploits this discovery to reduce the size of , it would represent a whole new approach to treating thrombosis that's different from anything else on the market," said Alisa Wolberg, PhD, associate professor of pathology and laboratory medicine and senior author of the JCI paper. "We think reducing factor XIII activity could be helpful to a large number of people, perhaps including some who cannot take existing 'blood-thinning' medications."

The ability for blood to clot is crucial to our health; by stanching bleeding long enough to allow healing, clots keep us from bleeding to death from injuries. But in the wrong circumstances, clots can pose a significant health hazards.

In patients with DVT, clots that form inside blood vessels, usually in the legs, obstruct the flow of blood, leading to pain and swelling while raising the risk of pulmonary embolism – a life-threatening condition in which a clot breaks away, travels through the bloodstream, and obstructs a crucial artery in the lungs.

Red blood cells that lack factor XIII looked squeezed together in the fibrin matrix. Many of these cells that lack factor XIII fall out of the clot, thus making the clot much smaller.

DVT often occurs during periods of restricted movement, such as prolonged sitting common during a long trip. Also, pregnancy, cancer, genetics, certain kinds of injuries, surgeries and medications can raise the risk of developing DVT.

Many patients at high risk for developing clots regularly take blood-thinning drugs, such as warfarin, which stifles the body's ability to make fibrin – the fibrous protein that binds a clot together. But these drugs can raise the risk of excessive bleeding, can cause side effects, and aren't appropriate for all patients.

"What's needed is a drug that reduces the risk of forming large clots but still allows you to form a clot when you need one to stanch bleeding," Wolberg said. "The biological pathway we've discovered may make it possible to strike that balance."

In experiments using mice and human blood, the researchers examined the role of a protein called factor XIII in clot formation. To their surprise, they found that mice incapable of producing factor XIII formed clots that were half the size of the clots produced by normal mice.

"That difference in itself was extremely striking," said Maria Aleman, PhD, first author of the JCI paper and a graduate student in Wolberg's lab at the time of the study. "Then, the second surprise was discovering that the size difference was actually due to a reduced number of red blood cells in the clot. Since no previous studies had suggested that it was possible to manipulate the number of red blood cells, we knew we had found something new."

Factor XIII appears to play a crucial role in helping the fibrin matrix keep its integrity during . Normally, the fibrin matrix forms a strong mesh in and around the clot, trapping red within. Without factor XIII, some are squeezed out, resulting in a much smaller clot.

Unlike existing drugs that reduce the formation of fibrin, a drug that reduces factor XIII could potentially cut the body's ability to produce large, dangerous clots without sacrificing the ability to produce small, beneficial clots.

Such a drug, then, would benefit patients at risk of developing the most dangerous kinds of clots.

Related Stories

Xarelto's approval expanded

November 5, 2012

(HealthDay)—Approval of the anti-clotting drug Xarelto (rivaroxaban) has been expanded by the U.S. Food and Drug Administration to include treating deep vein thrombosis (DVT) or pulmonary embolism.

Red blood cells take on many-sided shape during clotting

January 9, 2014

Red blood cells are the body's true shape shifters, perhaps the most malleable of all cell types, transforming – among many other forms—into compressed discs capable of going through capillaries with diameters smaller ...

Recommended for you

Crystal clear images uncover secrets of hormone receptors

July 31, 2015

Many hormones and neurotransmitters work by binding to receptors on a cell's exterior surface. This activates receptors causing them to twist, turn and spark chemical reactions inside cells. NIH scientists used atomic level ...

A cheaper, high-performance prosthetic knee

July 30, 2015

In the last two decades, prosthetic limb technology has grown by leaps and bounds. Today, the most advanced prostheses incorporate microprocessors that work with onboard gyroscopes, accelerometers, and hydraulics to enable ...

Flow means 'go' for proper lymph system development

July 27, 2015

The lymphatic system provides a slow flow of fluid from our organs and tissues into the bloodstream. It returns fluid and proteins that leak from blood vessels, provides passage for immune and inflammatory cells from the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.