A new genome editing method brings the possibility of gene therapies closer to reality

Researchers from Salk Institute for Biological Studies, BGI, and other institutes for the first time evaluated the safety and reliability of the existing targeted gene correction technologies, and successfully developed a new method, TALEN-HDAdV, which could significantly increased gene-correction efficiency in human induced pluripotent stem cell (hiPSC). This study published online in Cell Stell Cell provides an important theoretical foundation for stem cell-based gene therapy.

The combination of stem cells and targeted technology provides a powerful tool to model human diseases and develop potential cell replacement therapy. Although the utility of genome editing has been extensively documented, but the impact of these technologies on mutational load at the whole-genome level remains unclear.

In the study, researchers performed whole-genome sequencing to evaluate the mutational load at single-base resolution in individual gene-corrected hiPSC clones in three different disease models, including Hutchinson-Gilford progeria syndrome (HGPS), (SCD), and Parkinson's disease (PD).

They evaluated the efficiencies of gene-targeting and gene-correction at the haemoglobin gene HBB locus with TALEN, HDAdV, CRISPR/CAS9 nuclease, and found the TALENs, HDAdVs and CRISPR/CAS9 mediated gene-correction methods have a similar efficiency at the gene HBB locus. In addition, the results of deep whole-genome sequencing indicated that TALEN and HDAdV could keep the patient's genome integrated at a maximum level, proving the safety and reliability of these methods.

Through integrating the advantages of TALEN- and HDAdV-mediated genome editing, researchers developed a new TALEN-HDAdV hybrid vector (talHDAdV), which can significantly increase the gene-correction efficiency in hiPSCs. Almost all the genetic mutations at the gene HBB locus can be detected by telHDAdV, which allows this new developed technology can be applied into the gene repair of different kinds of hemoglobin diseases such as SCD and Thalassemia.

add to favorites email to friend print save as pdf

Related Stories

No extra mutations in modified stem cells, study finds

Jul 09, 2014

The ability to switch out one gene for another in a line of living stem cells has only crossed from science fiction to reality within this decade. As with any new technology, it brings with it both promise—the ...

Recommended for you

Duality in the human genome

9 hours ago

Humans don't like being alone, and their genes are no different. Together we are stronger, and the two versions of a gene – one from each parent – need each other. Scientists at the Max Planck Institute ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.