Researcher unlocks next step in creating HIV-1 immunotherapy using fossil virus

Researcher unlocks next step in creating HIV-1 immunotherapy using fossil virus

The road to finding a cure for HIV-1 is not without obstacles. However, thanks to cutting-edge research by Douglas Nixon, M.D., Ph.D., and colleagues, performed at the George Washington University (GW), Oregon Health & Science University, the University of Rochester, and UC San Francisco, the scientific community is one step closer to finding a viable immunotherapy option for HIV-1, using an immune attack against a fossil virus buried in the genome.

A major hurdle in eradicating HIV-1 has been outsmarting the frequent mutations, or changing coats of the caused by its high rate of replication. Researchers have focused on directed against the HIV-1 envelope in order to stop the virus, but the antibodies haven't been able to keep up with this constant change. Nixon's research team found that the right antibody directed against an ancestral virus buried within everyone's genomes might be able to target HIV-1 and neutralize it.

"What we've found is an antibody that recognizes these fossil viruses within all our genomes, which can neutralize HIV-1 in a way that has never been seen before," said Nixon, chair of the Department of Microbiology, Immunology, and Tropical Medicine at the GW School of Medicine and Health Sciences. "We have found in vitro, in the test tube, that you can actually have an antibody work against HIV-1, which is not directed against the HIV-1 virus itself."

In his research, Nixon and found that by targeting the fossil virus—an ancestral version of a retrovirus that has become a largely useless part of our DNA—that these antibodies could focus on a single fixed envelope, as it does not change like the constant changes of HIV-1's envelope outer coat. This discovery provides a new, therapeutic target to beat this particular coat, or variation.

More information: The article, "An Antibody Recognizing Ancestral Endogenous Virus Glycoproteins Mediates Antibody Dependent Cellular Cytotoxicity on HIV-1 Infected Cells" was published in the Cutting Edge section of the Journal of Immunology.

add to favorites email to friend print save as pdf

Related Stories

New artificial protein mimics a part of the HIV outer coat

Oct 22, 2013

A team of scientists at Duke Medicine and Memorial Sloan-Kettering Cancer Center has created an artificial protein coupled with a sugar molecule that mimics a key site on the outer coat of HIV where antibodies can bind to ...

Recommended for you

Preventing one case of HIV saves over $225K, study shows

Feb 27, 2015

How much money would be saved if one high-risk person was prevented from contracting HIV in the United States? A new study led by a researcher at Weill Cornell Medical College and published online Feb. 24 in Medical Care, answer ...

Research captures transient details of HIV genome packaging

Feb 27, 2015

Once HIV-1 has hijacked a host cell to make copies of its own RNA genome and viral proteins, it must assemble these components into new virus particles. The orchestration of this intricate assembly process falls to a viral ...

Could an HIV drug beat strep throat, flesh-eating bacteria?

Feb 25, 2015

With antibiotic resistance on the rise, scientists are looking for innovative ways to combat bacterial infections. The pathogen that causes conditions from strep throat to flesh-eating disease is among them, but scientists ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.