Researcher unlocks next step in creating HIV-1 immunotherapy using fossil virus

Researcher unlocks next step in creating HIV-1 immunotherapy using fossil virus

The road to finding a cure for HIV-1 is not without obstacles. However, thanks to cutting-edge research by Douglas Nixon, M.D., Ph.D., and colleagues, performed at the George Washington University (GW), Oregon Health & Science University, the University of Rochester, and UC San Francisco, the scientific community is one step closer to finding a viable immunotherapy option for HIV-1, using an immune attack against a fossil virus buried in the genome.

A major hurdle in eradicating HIV-1 has been outsmarting the frequent mutations, or changing coats of the caused by its high rate of replication. Researchers have focused on directed against the HIV-1 envelope in order to stop the virus, but the antibodies haven't been able to keep up with this constant change. Nixon's research team found that the right antibody directed against an ancestral virus buried within everyone's genomes might be able to target HIV-1 and neutralize it.

"What we've found is an antibody that recognizes these fossil viruses within all our genomes, which can neutralize HIV-1 in a way that has never been seen before," said Nixon, chair of the Department of Microbiology, Immunology, and Tropical Medicine at the GW School of Medicine and Health Sciences. "We have found in vitro, in the test tube, that you can actually have an antibody work against HIV-1, which is not directed against the HIV-1 virus itself."

In his research, Nixon and found that by targeting the fossil virus—an ancestral version of a retrovirus that has become a largely useless part of our DNA—that these antibodies could focus on a single fixed envelope, as it does not change like the constant changes of HIV-1's envelope outer coat. This discovery provides a new, therapeutic target to beat this particular coat, or variation.

More information: The article, "An Antibody Recognizing Ancestral Endogenous Virus Glycoproteins Mediates Antibody Dependent Cellular Cytotoxicity on HIV-1 Infected Cells" was published in the Cutting Edge section of the Journal of Immunology.

Related Stories

New artificial protein mimics a part of the HIV outer coat

date Oct 22, 2013

A team of scientists at Duke Medicine and Memorial Sloan-Kettering Cancer Center has created an artificial protein coupled with a sugar molecule that mimics a key site on the outer coat of HIV where antibodies can bind to ...

Recommended for you

Indiana HIV outbreak, hepatitis C epidemic sparks US alert

date 8 hours ago

Federal health officials helping to contain an HIV outbreak in Indiana state issued an alert to health departments across the U.S. on Friday, urging them to take steps to identify and track HIV and hepatitis C cases in an ...

Why are HIV survival rates lower in the Deep South than the rest of the US?

date Apr 22, 2015

The Deep South region has become the epicenter of the US HIV epidemic. Despite having only 28% of the total US population, nine states in the Deep South account for nearly 40% of national HIV diagnoses. This region has the highest HIV diagnosis rates and the highest number of people living with HIV of any ...

A bad buzz: Men with HIV need fewer drinks to feel effects

date Apr 20, 2015

Researchers at Yale and the VA Pittsburgh Healthcare System compared the number of drinks that men with HIV infection, versus those without it, needed to get a buzz. They found that HIV-infected men were more sensitive to ...

Research informs HIV treatment policy for inmates

date Apr 16, 2015

A national, five-year study of care for inmates with HIV brought strangers together, produced policy change in the Delaware Department of Corrections and documented the importance of good communication and ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.