A new way to generate insulin-producing cells in Type 1 diabetes (w/ Video)

A new study by researchers at Sanford-Burnham Medical Research Institute (Sanford-Burnham) has found that a peptide called caerulein can convert existing cells in the pancreas into those cells destroyed in type 1 diabetes-insulin-producing beta cells. The study, published online July 31 in Cell Death and Disease, suggests a new approach to treating the estimated 3 million people in the U.S., and over 300 million worldwide, living with type 1 diabetes.

"We have found a promising technique for type 1 diabetics to restore the body's ability to produce insulin. By introducing caerulein to the pancreas we were able to generate new —the cells that produce insulin—potentially freeing patients from daily doses of insulin to manage their blood-sugar levels." said Fred Levine, M.D., Ph.D., professor and director of the Sanford Children's Health Research Center at Sanford-Burnham.

The study first examined how mice in which almost all beta cells were destroyed—similar to humans with —responded to injections of caerulein. In those mice, but not in normal mice, they found that caerulein caused existing in the pancreas to differentiate into insulin-producing beta cells. Alpha cells and beta cells are both endocrine cells meaning they synthesize and secret hormones—and they exist right next to one another in the pancreas in structures called islets. However, alpha cells do not normally become beta cells.

The research team then examined human pancreatic tissue from type 1 diabetics, finding strong evidence that the same process induced by caerulein also occurred in the pancreases of those individuals. The process of alpha cells converting to beta cells does not appear to have any age limitations—it occurred in young and old individuals—including some that had type 1 diabetes for decades.

This video is not supported by your browser at this time.
Researchers discover a simple peptide that can induce new beta-cell formation in the pancreas. The findings show promise for a new approach to treating Type 1 diabetes. Credit: James Short

"When caerulein is administered to humans it can cause pancreatitis. So our next step is to find out which molecule(s) caerulein is targeting on alpha cells that triggers their transformation into beta cells. We need to know this to develop a more specific drug," said Levine.

Caerulein is a peptide originally discovered in the skin of Australian Blue Mountains tree frogs. It stimulates gastric, biliary, and pancreatic secretions, and has been used in humans as a diagnostic tool in pancreatic diseases.

"In addition to creating new beta cells, another issue that needs to be addressed to achieve a cure for type 1 diabetes is that any new beta cells will be attacked by the present in every patient with type 1 diabetes. We are currently working with Linda Bradley, Ph.D., professor in the Immunity and Pathogenesis Program, and co-author of the study, to couple our approach with an approach to reining in the autoimmune response," added Levine.

add to favorites email to friend print save as pdf

Related Stories

Reprogramming cells to fight diabetes

Feb 22, 2013

For years researchers have been searching for a way to treat diabetics by reactivating their insulin-producing beta cells, with limited success. The "reprogramming" of related alpha cells into beta cells ...

No rebirth for insulin secreting pancreatic beta cells

Apr 24, 2013

Pancreatic beta cells store and release insulin, the hormone responsible for stimulating cells to convert glucose to energy. The number of beta cells in the pancreas increases in response to greater demand for insulin or ...

Recommended for you

Growing a blood vessel in a week

11 hours ago

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

14 hours ago

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments