Neuro researchers advocate for a shift in thinking for stroke rehabilitation

July 30, 2014

With the advent of non-surgical modalities, stimulation of the brain has become a popular science and researchers must work to ensure systematic methods for consistent results in the study of stroke rehabilitation. A new study out today in The Neuroscientist discusses a systematic shift in perspective and suggests that chronically stimulating premotor areas (PMAs) of the brain would strongly promote stroke motor recovery, for example by restoring balance between the stroke and the intact hemispheres while establishing greater widespread connectivity.

"Before therapeutic potential of brain stimulation is missed amidst the enthusiasm for its ability to augment brain activity, it is urgent to systematically understand whom stimulation of the brain may benefit, how, and why," said study author Dr. Ela Plow from the Biomedical Engineering, Lerner Research Instt. at the Cleveland Clinic Foundation. "Addressing the challenge first in stroke is critical, not just because stroke is the leading cause of long-term adult disability, but also because the field was one of the first to report on therapeutic potential of brain stimulation, but unfortunately the first to witness some of its most noted conflicts as well."

Using a conceptual model, researchers Ela B. Plow, David A. Cunningham, Nicole Varnerin, and Andre Machado suggest expanding the scope of stimulation to include other substrates, such as premotor and supplementary motor cortices that are more likely to survive damage in humans, offer their independent output, and collaborate with areas in the intact hemisphere to recruit their cooperation towards recovery as well. Rather than propose that these substrates could serve as the be-all-end-all of plasticity, the researchers suggest that their role may be more meaningful in those with greater damage and do not discount the possibility of success for other substrates such as cerebellum, striatum, parietal cortices etc.

Dr. Plow continued, "Conflicting evidence in stroke has dampened the enthusiasm for brain stimulation witnessed across several hundred early studies in the last decade, limiting the potential of clinical outpatient or even inpatient delivery in the immediate future. Before starting another clinical trial and waiting to see if by chance the new study shows positive effects, we suggest re-evaluating and shifting perspective."

The researchers outline the journey of stimulation in from trials with homogeneous animal models, to early clinical studies where patients with greater sparing of motor cortices and spared output responded exceptionally well to stimulation of their residual cortex, to larger clinical trials that enrolled the more impaired such as those with greater damage to cortices, in which stimulation of motor cortices failed to uniformly augment outcomes of recovery.

With such differences among trial groups, the researchers found that a great discordance between early and later, larger clinical studies resulted. Dr. Plow commented, "By following a one-size-fits-all approach, we risk relying only on pure chance."

However, the researchers also found that this can be corrected with new thinking for research.

"Our intent here is to create a shift in perspective that forces us to broaden scope of stimulation from affecting a single target and a single mechanism to imagining how and what may remain to assume the potential for recovery in humans," Dr. Plow continued. "We even suggest that targets may not even need to be uniform across all, because it may leave outcomes of trials to pure chance. Instead, we believe systematically exploring substrates and defining successes and failures of each would truly create personalized, not popular science."

Explore further: Electrical stimulation to the brain makes learning easier

More information: The Neuroscientist, June 20, 2014. DOI: 10.1177/1073858414537381

Related Stories

Electrical stimulation to the brain makes learning easier

September 21, 2011

(Medical Xpress) -- A new study presented at the British Science Festival by Professor Heidi Johansen-Berg from the University of Oxford shows that the application of small electrical currents to specific parts of the brain ...

New research on stroke aims to help recovery

June 20, 2014

Stroke is the leading cause of adult disability worldwide but new funding of $1.2 million for research at the University of Auckland aims to better help people recover normal movement after stroke.

Recommended for you

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...

No cable spaghetti in the brain

November 24, 2015

Our brain is a mysterious machine. Billions of nerve cells are connected such that they store information as efficiently as books are stored in a well-organized library. To this date, many details remain unclear, for instance ...

Neurons encoding hand shapes identified in human brain

November 23, 2015

Neural prosthetic devices, which include small electrode arrays implanted in the brain, can allow paralyzed patients to control the movement of a robotic limb, whether that limb is attached to the individual or not. In May ...

Wireless sensor enables study of traumatic brain injury

November 23, 2015

A new system that uses a wireless implant has been shown to record for the first time how brain tissue deforms when subjected to the kind of shock that causes blast-induced trauma commonly seen in combat veterans.

Neuroscientists reveal how the brain can enhance connections

November 18, 2015

When the brain forms memories or learns a new task, it encodes the new information by tuning connections between neurons. MIT neuroscientists have discovered a novel mechanism that contributes to the strengthening of these ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.