Scientists shine bright new light on how living things capture energy from the sun

Since Alexandre Edmond Becquerel first discovered the photovoltaic effect in 1839, humankind has sought to further understand and harness the power of sunlight for its own purposes. In a new research report published in the August 2014 issue of the FASEB Journal, scientists may have uncovered a new method of exploiting the power of sunlight by focusing on a naturally occurring combination of lipids that have been strikingly conserved throughout evolution. This conservation—or persistence over time and across species—suggests that this specific natural combination of lipids is important for ensuring light capture and conversion.

"We confirmed the properties of individual thylakoid galactoglycerolipid (or glycolipid) classes previously reports as HII forming lipids, but brought to light how these properties are subtly orchestrated in the matrix in which proteins are embedded, as contributing components for the elaboration of the architecture of photosynthetic membranes and its dynamics," said Juliette Jouhet, Ph.D., a researcher involved in the work from the Laboratoire de Physiologie Cellulaire and Vegetale at the Institut de Recherches en Technologies et Sciences pour le Vivant in Grenoble, France.

To make this discovery, Jouhet and colleagues analyzed biomimetic membranes reconstructed with different mixtures of natural lipids, so as to comprehend the contribution of each one of them in the observed biophysical properties. They then analyzed the membranes by neutron diffraction methods. The cohesion between membranes was analyzed by the evolution of the distance between bilayers upon hydration.

"This report helps fulfill the hope of Jimmy Stewart's character, Tony, in 'You Can't Take it with You,'" said Gerald Weissmann, M.D., Editor-in-Chief of the FASEB Journal. "Just as he once dreamt of harnessing the process by which grass derives energy from the sun, this report helps us do just that by defining the green engines in plants and higher organisms that accomplish the task."

More information: FASEB J. August 2014 28:3373-3383; DOI: 10.1096/fj.13-247395

add to favorites email to friend print save as pdf

Related Stories

New model of the quality control of photosystem II

Jun 25, 2014

Thylakoid membranes are piled up to form the grana well known as the site where the Photosystem II (PSII) complexes which play a role in the primary photochemical reaction exist. However, the structures and ...

New insight into photosynthesis

May 27, 2014

The way that algae and plants respond to light has been reinterpreted based on results from experiments studying real-time structural changes in green algae. Under particular lighting conditions during photosynthesis, ...

New membrane-synthesis pathways in bacteria discovered

Jun 13, 2014

Biologists at the Ruhr-Universität Bochum (RUB) have discovered new mechanisms used by bacteria to manufacture lipids, i.e. fat molecules, for the cell membrane. Those mechanisms are a combination of familiar ...

Direct 'writing' of artificial cell membranes on graphene

Oct 10, 2013

Graphene emerges as a versatile new surface to assemble model cell membranes mimicking those in the human body, with potential for applications in sensors for understanding biological processes, disease detection ...

Recommended for you

A hybrid vehicle that delivers DNA

23 hours ago

A new hybrid vehicle is under development. Its performance isn't measured by the distance it travels, but rather the delivery of its cargo: vaccines that contain genetically engineered DNA to fight HIV, cancer, ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.