Scientists discover genetic switch that can prevent peripheral vascular disease in mice

Millions of people in the United States have a circulatory problem of the legs called peripheral vascular disease. It can be painful and may even require surgery in serious cases. This disease can lead to severe skeletal muscle wasting and, in turn, limb amputation.

At The University of Texas Health Science Center at Houston (UTHealth) Medical School, scientists tested a non-surgical preventative treatment in a mouse model of the disease and it was associated with increased blood circulation. Their proof-of-concept study appears in the journal Cell Reports.

Unlike previous studies in which other investigators used individual stimulatory factors to grow blood vessels, Vihang Narkar, Ph.D., senior author and assistant professor in the Department of Integrative Biology and Pharmacology at the UTHealth Medical School, identified and turned off a that stifles blood vessel development.

"We discovered an inhibitory switch that degrades blood vessels," said Narkar, whose laboratory is in the UTHealth Center for Metabolic and Degenerative Diseases at The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases. "We were able to genetically turn it off to prevent in a preclinical study."

Added Narkar, "Our next step will be to test this targeted treatment in models of other conditions that dramatically decrease circulation like diabetes and atherosclerosis."

Narkar said using individual growth factors to stimulate blood vessel growth often leads to the formation of leaky and non-functional . "By turning off a genetic switch that acts as a roadblock for blood vessel growth, we were able to trigger and accelerate the natural process of blood vessel regeneration that involves a battery of growth factors," he said.

The switch is called peroxisome proliferator-activated receptor gamma co-activator 1 beta (PGC1beta) and could be a key to future treatments for additional conditions like cardiac myopathies, cancer and retinopathy.

add to favorites email to friend print save as pdf

Related Stories

Protein responsible for 'bad' blood vessel growth discovered

Jul 17, 2013

The discovery of a protein that encourages blood vessel growth, and especially 'bad' blood vessels – the kind that characterise diseases as diverse as cancer, age-related macular degeneration and rheumatoid arthritis – ...

Recommended for you

A hybrid vehicle that delivers DNA

11 hours ago

A new hybrid vehicle is under development. Its performance isn't measured by the distance it travels, but rather the delivery of its cargo: vaccines that contain genetically engineered DNA to fight HIV, cancer, ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.