Scientists believe they can identify which HIV strains cause infection

July 21, 2014 by Laura Bailey

(Medical Xpress)—HIV-infected people carry many different HIV viruses and all have distinct personalities—some much more vengeful and infectious than others.

Yet, despite the breadth of infectivity, roughly 76 percent of HIV infections arise from a single virus. Now, scientists believe they can identify the culprit with very specific measurements of the quantities of a in the HIV virus.

Quantifying this key protein may reveal which of the many present actually caused the infection.

The University of Michigan study is thought to be the first in which researchers were able to capture HIV at the single-particle level and measure with molecular resolutions, said principal investigator Wei Cheng of the U-M College of Pharmacy. Cheng's group found that the HIV virus particles have different quantities of a key protein that enables virulence, and the protein-rich were more infectious than the others.

"There were significant molecular differences in the HIV viral particles—some were very dangerous and infectious, and some were more tame. The virus was very heterogeneous," Cheng said. "Our technique lets us see differences down to the single molecule level, so if one virus particle differs from another by even one molecule, our instrument can detect that."

Now that scientists can measure molecular differences in HIV viral particles, there's a possibility that drugs could be developed to target the molecular features present in the more virulent strains, he said.

Cheng's lab developed and used a new optical technique, which is outlined in a previous paper, to measure the particles.

To study the HIV viral particles, the U-M team improved upon an already existing tool called optical tweezers, which uses photons, or light, to manipulate tiny molecular motors or nanostructures. This immobilizes the structure and enables contact-free study that doesn't disturb or distort the structure.

This new U-M optical technique gives rise to a couple different research directions for Cheng's lab, he said. Scientists can now infect individual cells with single HIV viral particles to determine the particle's virulence. This technique also has the potential for sorting of viruses and application in other deadly viruses. Ultimately, Cheng said they hope to learn which strains of HIV contain the most dangerous most likely to infect healthy cells.

The study, "Optical trapping of individual human immunodeficiency viruses in culture fluid reveals heterogeneity with single-molecule resolution," is scheduled for online publication July 20 in Nature Nanotechnology.

Explore further: Kinesin 'chauffeur' helps HIV escape destruction

More information: "Optical trapping of individual human immunodeficiency viruses in culture fluid reveals heterogeneity with single-molecule resolution." Yuanjie Pang, et al. Nature Nanotechnology (2014) DOI: 10.1038/nnano.2014.140. Received 13 February 2014 Accepted 12 June 2014 Published online 20 July 2014

Related Stories

HIV can cut and paste in the human genome

May 27, 2014

For the first time researchers have succeeded in altering HIV virus particles so that they can simultaneously, as it were, 'cut and paste' in our genome via biological processes. Developed at the Department of Biomedicine ...

Recommended for you

Videos reveal how HIV spreads in real time

October 2, 2015

How retroviruses like HIV spread in their hosts had been unknown—until a Yale team devised a way to watch it actually happen in a living organism. The elaborate and sometimes surprising steps the virus takes to reach and ...

Researchers find proteins that shut down HIV-1

September 30, 2015

A pair of studies by researchers at the University of Massachusetts Medical School, the University of Trento in Italy, and the University of Geneva in Switzerland, point to a promising new anti-retroviral strategy for combating ...

An antibody that can attack HIV in new ways

September 11, 2015

Proteins called broadly neutralizing antibodies (bNAbs) are a promising key to the prevention of infection by HIV, the virus that causes AIDS. bNAbs have been found in blood samples from some HIV patients whose immune systems ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.