Scientists uncover new compounds that could affect circadian rhythm

July 8, 2014

Scientists from the Florida campus of The Scripps Research Institute (TSRI) have discovered a surprising new role for a pair of compounds—which have the potential to alter circadian rhythm, the complex physiological process that responds to a 24-hour cycle of light and dark and is present in most living things.

At least one of these compounds could be developed as a to uncover new therapeutic approaches to a range of disorders, including diabetes and obesity.

The study, which was published online ahead of print by the Journal of Biological Chemistry, focuses on a group of proteins known as REV-ERBs, a superfamily that plays an important role in the regulation of circadian physiology, metabolism and .

The new study shows that the two compounds, cobalt protoporphyrin IX (CoPP) and zinc protoporphyrin IX (ZnPP), bind directly to REV-ERBs.

REV-ERBs are normally regulated by heme, a molecule that binds to hemoglobin, helps transport oxygen from the bloodstream to cells and plays a role in producing cellular energy. While heme activates REV-ERB, CoPP and ZnPP inhibit it.

"These compounds are like heme, but when you swap out their metal centers their functions are different," said Doug Kojetin, a TSRI associate professor who led the study. "This makes us think that the key is the chemistry of the metal ion itself. Altering the chemistry of this metal center may be an opportune way to target REV-ERB for diabetes and obesity."

Kojetin and his colleagues recently demonstrated that synthetic REV-ERB agonists, like the new , reduce body weight in mice that were obese due to diet.

Explore further: Scientists create compounds that dramatically alter biological clock and lead to weight loss

More information: "Structure of REV-ERB_ Ligand-binding Domain Bound to a Porphyrin Antagonist,"

Related Stories

Recommended for you

An accessible approach to making a mini-brain

October 1, 2015

If you need a working miniature brain—say for drug testing, to test neural tissue transplants, or to experiment with how stem cells work—a new paper describes how to build one with what the Brown University authors say ...

Tension helps heart cells develop normally in the lab

October 1, 2015

The heart is never quite at rest, and it turns out that even in a lab heart cells need a little of that tension. Without something to pull against, heart cells grown from stem cells in a lab dish fail to develop normally.

Dormant viral genes may awaken to cause ALS

September 30, 2015

Scientists at the National Institutes of Health discovered that reactivation of ancient viral genes embedded in the human genome may cause the destruction of neurons in some forms of amyotrophic lateral sclerosis (ALS). The ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jul 09, 2014
So if one has deficit of cobalt and/or zinc then he/she can have too low concentration of these substances which can lead to obesity and diabetes?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.