Scissoring the lipids

July 28, 2014

A new strategy which enables molecules to be disconnected essentially anywhere, even remote from functionality, is described by researchers from the University of Bristol in Nature Chemistry today. The method is now being developed to explore the possibility of creating a tuberculosis (TB) vaccine.

The organic synthesis strategy, developed by Professor Varinder Aggarwal and Dr Ramesh Rasappan in the School of Chemistry, involves a new method for combining smaller fragments together in which there is no obvious history in the product of their genesis.

The paper describes not only this new strategy, but also its application to the shortest known synthesis, just 14 steps, of hydroxyphthioceranic acid, a key component of the cell wall lipid of the virulent mycobacterium .

Professor Aggarwal said: "Tuberculosis bacteria (TB) have an extraordinary thick lipid coat which acts as an impenetrable waxy barrier to cytotoxic agents, making it especially challenging to combat. Vaccination would be an ideal solution against TB and the lipid coat has been identified as a potential antigen. This requires the synthesis of the complex lipid which is composed of a disaccharide sugar core along with the complex chiral lipid, hydroxyphthioceranic acid."

In a collaborative project funded by the Gates Foundation, the method is now being scaled up to explore the possibility of creating a TB vaccine based on the cell wall sulfolipid.

Explore further: Fluorescent tail tags TB

More information: Nature Chemistry (2014), DOI: 10.1038/nchem.2010

Related Stories

Fluorescent tail tags TB

March 9, 2011

A new way of detecting tuberculosis (TB) inside cells has been developed by scientists from Oxford University and NIH in the US.

Sugar synthesis hits the sweet spot

May 6, 2011

A new strategy for synthesizing the kind of complex molecules that certain bacteria use to build their protective cell walls has been developed by Akihiro Ishiwata and Yukishige Ito from the RIKEN Advanced Science Institute ...

Potential new drug for tuberculosis

August 5, 2013

A new drug capable of inhibiting growth of Mycobacterium tuberculosis is reported this week in Nature Medicine. The findings may improve therapeutic options for the treatment of drug resistant tuberculosis (TB).

Chemists find a way to escape from flatland

June 9, 2014

(Phys.org) —A new method for coupling together secondary and tertiary boronic esters to aromatic compounds which preserves the 3-D shape of the boronic ester is described by researchers from the University of Bristol in ...

Recommended for you

Zika virus may persist in the vagina days after infection

August 25, 2016

The Zika virus reproduces in the vaginal tissue of pregnant mice several days after infection, according to a study by Yale researchers. From the genitals, the virus spreads and infects the fetal brain, impairing fetal development. ...

Team discovers how Zika virus causes fetal brain damage

August 24, 2016

Infection by the Zika virus diverts a key protein necessary for neural cell division in the developing human fetus, thereby causing the birth defect microcephaly, a team of Yale scientists reported Aug. 24 in the journal ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.