Striatal dopamine transporter binding correlates with body composition and visual attention bias for food cues in men

Research to be presented at the Annual Meeting of the Society for the Study of Ingestive Behavior (SSIB), the foremost society for research into all aspects of eating and drinking behavior, describes a way that brain chemistry may make some people notice food more easily, which can tempt overeating even in people who are not overweight. Dopamine activity in the striatum, an area of the brain sensitive to food reward, was linked to how quickly men noticed a food picture hidden among neutral pictures. In turn, the men who quickly noticed food pictures also ate more.

From rodent research it is clear that action in the striatum motivates eating, and this goes awry in obesity. "We do know that in human obesity the striatal dopamine system is affected, but interesting enough we know little about the striatal dopamine system of young, healthy individuals and how it relates to the motivation to eat" says Susanne la Fleur from the Academic Medical Center in Amsterdam, who directed the study linking dopamine, attention to , and eating.

Ordinarily the burst of dopamine during a rewarding activity is eventually stopped when it is re-absorbed into the cells it came from. That re-uptake process requires a brain chemical called "" (DAT). Lower DAT means dopamine is reabsorbed more slowly, causing it to keep acting on the brain. The researchers scanned brains of healthy, non-obese young men to determine available DAT. The men completed a computerized visual attention task to see how quickly they could detect food pictures among neutral pictures. Subjects were also asked to report food intake during 7 days.

The researchers found that the men with lower DAT, which means higher dopamine activity, showed a stronger visual attention bias towards food, detecting food pictures more quickly. "We could speculate that in healthy humans dopamine does motivate eating, however although we did observe a correlation between striatal dopamine transporter binding and the visual attention bias for food; and between visual attention bias for food and actual food intake, we did not observe a correlation between striatal dopamine transporter binding and actual food intake. Thus, a factor in addition to dopamine must be involved in going from being motivated to actual eating", la Fleur concluded.

Provided by Society for the Study of Ingestive Behavior

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Why it's so hard to diet

Jun 25, 2014

We tried low-fat diets. We tried high-protein and low-carb. Each diet had its pros and cons. By now, many Americans are coming to the inescapable conclusion that there's only one way to lose weight: eat less. Why is that ...

Movement disorders in young people related to ADHD

Jul 03, 2014

Researchers at the University of Copenhagen and the Copenhagen University Hospital have identified a particular genetic mutation that may cause parkinsonism in young people. The mutation interferes with the ...

Recommended for you

3-D printing offers innovative method to deliver medication

5 hours ago

3-D printing could become a powerful tool in customizing interventional radiology treatments to individual patient needs, with clinicians having the ability to construct devices to a specific size and shape. That's according ...

Mystery of the reverse-wired eyeball solved

Feb 27, 2015

From a practical standpoint, the wiring of the human eye - a product of our evolutionary baggage - doesn't make a lot of sense. In vertebrates, photoreceptors are located behind the neurons in the back of the eye - resulting ...

Neurons controlling appetite made from skin cells

Feb 27, 2015

Researchers have for the first time successfully converted adult human skin cells into neurons of the type that regulate appetite, providing a patient-specific model for studying the neurophysiology of weight ...

Quality control for adult stem cell treatment

Feb 27, 2015

A team of European researchers has devised a strategy to ensure that adult epidermal stem cells are safe before they are used as treatments for patients. The approach involves a clonal strategy where stem cells are collected ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.