Team develops new approach to identify genes poised to respond in asthma patients

In a study published yesterday in the scientific journal Nature Immunology, a group at the La Jolla Institute (LJI) led by Pandurangan Vijayanand, Ph.D. identify new genes that likely contribute to asthma, a disease that currently affects over 200 million people world wide.

An organism's genetic material, also known as its genome, can be divided into small sections or 'neighborhoods.' Scientists can determine which genetic neighborhoods in a cell are active, or primed for gene production, by looking for a marker on the genome called an enhancer. An enhancer can increase the production of genes in its immediate neighborhood. The goal of the published study is to find genes whose neighborhoods are active in , but inactive in healthy cells. Genes that are in active neighborhoods in diseased cells are likely to contribute to disease, and can potentially be targeted with drug treatments.

In order to find genetic neighborhoods that are active in asthmatic disease, the scientists in Vijayanand's group focus their experiments on , which develop abnormally in asthma patients. Memory cells are responsible for quickly responding to foreign substances called antigens that the host has been exposed to previously. Air passage inflammation, which characterizes asthma, is mediated by an overactive response to inhaled antigens by memory cells.

By applying his technique in small populations of abnormal memory cells, Vijayanand highlights 33 genetic neighborhoods that are highly active in diseased cells, but inactive in , shifting the focus of asthma research to specific genes that are located in these neighborhoods.

Genome-wide association studies (GWAS) that are less precise, have previously identified 1,500 potential target regions associated with asthmatic disease. According to Vijayanand, these targets are too numerous to study individually, and as a result, the field has remained focused on just a few molecules for discovery of new asthma treatments. Using their approach, Vijayanand's team searched the 1,500 targets for those that have the greatest likelihood of contributing to asthmatic disease. "Our unbiased and hypothesis-free approach has revealed a staggering but manageable number of new molecules that could play a role in asthma, and thus are potentially novel therapeutic targets," said Vijayanand.

Vijayanand and his team completed the study using different amounts of cells from the blood of healthy individuals and asthmatic patients. They did so in order to determine the smallest number of cells that were required for their technique, and found that it works with as little as 10,000 cells, which is significantly less than the millions of cells required to use other methods. Vijayanand envisions using this technique in situations where access to is limited, such as tumor biopsy for cancer.

The frequency of asthma is rising across the developed world as well as in several large developing countries. Treatment for asthma usually includes long-term nonspecific medication, as there is no cure at present.

Vijayanand says this study provides information that can be the starting point for many avenues of research and treatment. He says, "our study provides a rich and comprehensive resource that will be useful to the scientific community, enabling investigators to conduct their own detailed studies of the functional significance of the novel genes and enhancers that we have identified."

More information: The findings were published in a Nature Immunology paper entitled "Epigenomic analysis of primary human T cells reveals enhancers associated with TH2 memory cell differentiation and asthma susceptibility."

add to favorites email to friend print save as pdf

Related Stories

The nose knows in asthma

Feb 19, 2014

It has become increasingly clear in recent years that asthma comes in several variations, with different causes, different pathologies and different responses to therapy. These subtypes of asthma can be identified by knowing ...

Hope of new treatment for severe asthma patients

Oct 25, 2013

New research from Japan brings hope of a new treatment for asthma patients resistant to corticosteroids. In a study published today in the journal Nature Communications, researchers from the RIKEN Center ...

Recommended for you

Could trophoblasts be the immune cells of pregnancy?

Dec 18, 2014

Trophoblasts, cells that form an outer layer around a fertilized egg and develop into the major part of the placenta, have now been shown to respond to inflammatory danger signals, researchers from Norwegian University of ...

Moms of food-allergic kids need dietician's support

Dec 18, 2014

Discovering your child has a severe food allergy can be a terrible shock. Even more stressful can be determining what foods your child can and cannot eat, and constructing a new diet which might eliminate entire categories ...

Multiple allergic reactions traced to single protein

Dec 17, 2014

Johns Hopkins and University of Alberta researchers have identified a single protein as the root of painful and dangerous allergic reactions to a range of medications and other substances. If a new drug can ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.