New technique uses 'simulated' human heart to screen drugs

July 21, 2014
Dr Helen Maddock from the Centre for Applied Biological and exercise Sciences at Coventry University

A Coventry University scientist has developed a pioneering new way – using samples of beating heart tissue – to test the effect of drugs on the heart without using human or animal trials.

The breakthrough is the work of Dr Helen Maddock – an expert in cardiovascular physiology and pharmacology from the University's Centre for Applied Biological and Exercise Sciences – and could lead to the lives of hundreds of future patients being saved and the quality of their treatments improved.

Adverse effects of drugs on the are a major cause of many medical treatments failing, but -related side-effects can often only be detected once a drug is being used on patients in clinical trials – by which time it is too late.

Dr Maddock's in vitro technique – which means 'in glass' in reference to it taking place in a laboratory environment rather than in a living organism – uses a specimen of attached to a rig allowing the muscle to be lengthened and shortened whilst being stimulated by an electrical impulse, mimicking the biomechanical performance of cardiac muscle.

Trial drugs can then be added to the tissue to determine whether or not they have an adverse effect on the force of contraction of the muscle (and therefore of the heart), a test that could only previously be performed in vivo – i.e. on living animals – often with inconclusive results.

This 'simulated' cardiovascular system – known as a work-loop assay – provides the most realistic model of heart muscle dynamics in the world to date, and opens up unprecedented possibilities for identifying negative effects of drugs early and inexpensively – potentially saving lives and speeding up the development of successful drug treatments.

Dr Maddock has formed a spin-out company – InoCardia Ltd – from Coventry University to begin implementing her groundbreaking technique in the pharma industry, and it has already received a quarter of a million pound investment from Warwickshire-based technology investment firm Mercia Fund Management.

Dr Maddock, who spent almost ten years developing the technique, said:

"I'm delighted that our research is at a stage where we can confidently say the work-loop assay we've created is the world's only clinically relevant in vitro human model of cardiac contractility. It has the potential to shave years off the development of successful drugs for a range of treatments.

"Both the pharma industry and regulators recognise that existing methods of assessing the contractility of the heart are fraught with problems, so we're incredibly excited to be able to introduce a new way to accurately determine the safety of drugs in respect of the heart without the need to test on humans or animals."

Mark Payton, managing director of Mercia Fund Management, added:

"InoCardia benefits from a proprietary approach following many years of investigation by Helen and her team, and offers the potential for early screening of compounds in development without the initial need for extensive animal trials. Through a markedly accelerated drug development process, this will decrease timelines to drug development, and as a consequence greatly reduce the cost of new . The end beneficiary will, of course, be patients receiving novel treatments sooner."

Dr Maddock and InoCardia Ltd are already in discussions with a multinational biopharmaceutical company with a view to applying the assay in industry.

Explore further: Misread heart muscle gene a new clue to risk of sudden cardiac death

Related Stories

New insights into pain relief drugs

July 4, 2014

(Medical Xpress)—Scientists from the Research School of Biology have opened the door to a new world of pain treatments with their discovery of the exact way that pain relief drugs, such as anaesthetics, work on the body.

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

Strict diet combats rare progeria aging disorders

August 25, 2016

Mice with a severe aging disease live three times longer if they eat thirty percent less. Moreover, they age much healthier than mice that eat as much as they want. These are findings of a joint study being published today ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.