Cell signaling pathway linked to obesity, Type 2 diabetes

by Natalie Van Hoose
Shihuan Kuang

(Medical Xpress)—A Purdue University study shows that Notch signaling, a key biological pathway tied to development and cell communication, also plays an important role in the onset of obesity and Type 2 diabetes, a discovery that offers new targets for treatment.

A research team led by Shihuan Kuang, associate professor of animal sciences, found that blocking Notch signaling in the fat tissue of mice caused white fat cells to transform into a "leaner" type of fat known as beige fat. The finding suggests that suppressing Notch signaling in fat cells could reduce the risk of obesity and related health problems, Kuang said.

"This finding opens up a whole new avenue to understanding how fat is controlled at the molecular level," he said. "Now that we know Notch signaling and obesity are linked in this way, we can work on developing new therapeutics."

The human body houses three kinds of fat: white, brown and beige. White fat tissue stores fatty acids and is the main culprit in weight gain. Brown fat, which helps keep hibernating animals and infants warm, burns fatty acids to produce heat. Humans lose most of their as they mature, but they retain a similar kind of fat - beige fat, which also generates heat by breaking down .

Buried in white fat tissue, beige fat cells are unique in that they can become white fat cells depending on the body's metabolic needs. White fat cells can also transform into beige fat cells in a process known as browning, which raises the body's metabolism and cuts down on obesity.

Kuang and his team found that the Notch signaling pathway inhibits browning of white fat by regulating expression of genes that are related to beige fat tissue.

"The Notch pathway functions like a commander, telling the cell to make white fat," he said.

Suppressing key genes in the Notch pathway in the of mice caused them to burn more energy than wild-type mice, reducing their and raising their metabolism. The transgenic mice stayed leaner than their wild-type littermates even though their daily energy intake was similar, Kuang said. They also had a higher sensitivity to insulin, a lower blood glucose level and were more resistant to weight gain when fed a high-fat diet.

Pengpeng Bi, a doctoral candidate in animal sciences and first author of the study, said that the transgenic mice's appeared browner upon dissection than the fat in wild-type mice, suggesting that blocking the Notch pathway had increased the number of their beige .

"Otherwise they looked normal," he said. "We did not notice anything exceptional about them until we looked at the fat."

Kuang and his team found that giving obese mice dibenzazepine, a drug that suppresses the Notch signaling pathway, reduced their obesity and improved their glucose balance.

Because the Notch signaling pathway is very similar in mice and humans, Kuang sees the results as having important implications for treating obesity and Type 2 diabetes in humans.

Type 2 diabetes, formerly known as "adult-onset diabetes," is a chronic ailment that particularly affects people who are overweight, lead sedentary lifestyles or have poor nutrition.

"This gives us new targets in the fight against obesity," Kuang said. "Inhibiting genes in the Notch pathway can convert white fat into beige and could reverse some of the effects of diabetes by renewing the body's sensitivity to insulin."

The study was published in Nature Medicine.

More information: Inhibition of Notch signaling promotes browning of white adipose tissue and ameliorates obesity, www.nature.com/nm/journal/vaop… nt/full/nm.3615.html.

add to favorites email to friend print save as pdf

Related Stories

Immune system molecules may promote weight loss, study finds

Jun 05, 2014

The calorie-burning triggered by cold temperatures can be achieved biochemically – without the chill – raising hopes for a weight-loss strategy focused on the immune system rather than the brain, according to a new study ...

Team finds on-off switch to burning stored fat

Jun 05, 2014

Scientists this week reported that a molecular pathway called mTORC1 controls the conversion of unhealthy white fat into beige fat, an appealing target for increasing energy expenditure and reducing obesity. The team, led ...

'Beige' cells key to healthy fat

Jan 17, 2014

"Beige fat" cells found in healthy subcutaneous fat in mice play a critical role in protecting the body from the disease risks of obesity, report researchers at Dana-Farber Cancer Institute, who say their ...

Recommended for you

Growing a blood vessel in a week

21 hours ago

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

Oct 24, 2014

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments