Computation and collaboration lead to significant advance in malaria

August 14, 2014
Credit: CDC

Researchers led by Baylor College of Medicine have developed a new computational method to study the function of disease-causing genes, starting with an important new discovery about a gene associated with malaria – one of the biggest global health burdens.

The work published today in the current issue of the journal Cell includes collaborators comprised of computational and evolutionary biologists and leading malaria experts from Baylor, Columbia University Medical Center, Princeton University, Pennsylvania State University and the National Institute of Allergy and Infectious Diseases (NIAID).

"Today, rapidly falling costs means that high throughput sequencing projects are revealing the entire gene sequences of ever more species, but the biological functions of most of these genes remain unknown," said Dr. Olivier Lichtarge, professor of molecular and human genetics and director of the Computational and Integrative Biomedical Research Center at Baylor and senior author of the report. "To address this problem, our lab has developed new methods to predict gene and protein functions."

Dr. Andreas Martin Lisewski, an instructor in Lichtarge's lab at Baylor, served as the leading author on the report.

The researchers came up with a that allows biological information to literally flow from gene to gene across a massive network across many genomes, known as the "supergenomic" network.

"The network connects millions of genes from hundreds of species based on their interactions within the organism or based on their ancestral relations between different species," said Lisewski. "Normally, computing the flow of functional information would be costly and slow, but we developed a compression method that reduces this gigantic network into one that is much smaller and now computationally tractable. The surprise is that these biological networks are compressible much like digital data in today's computers."

To test their method, the researchers looked at functional predictions of a protozoan parasite known to cause the most severe form of malaria in humans – Plasmodium falciparum. While it has been more than 10 years since the genome of this parasite was fully sequenced, still too little is known about the function for most of its genes.

Every year, malaria affects more than 200 million people and contributes to nearly 1 million deaths worldwide.

"To better understand this disease, we need to identify more functions of the parasite's genes. This understanding may eventually help us to stem the rise of drug-resistant malaria, such as the emerging resistance to artemisinins," said Lisewski.

Artemisinins are a family of drugs that currently form the frontline treatment against Plasmodium falciparum malaria. Artemisinin was originally isolated as an extract from a traditional Chinese herbal remedy, and while it is still highly effective against malaria in patients, the mechanism of action has been unclear. A loss of artemisinin's antimalarial effectiveness due to genetic resistance would have devastating global health consequences.

The researchers honed in on the parasite protein EXP1 that was known to be essential to the but for which there were no details on its function.

Using the network, they showed that this protein enables the parasite to detoxify the main metabolic byproducts it creates in red blood cells. They also demonstrated that it has a direct role in drug action and susceptibility to artesunate, an important member of the artemisinin drug family.

"Through this multi-year collaborative effort, we now have an improved understanding of the protective molecular mechanisms of the parasite and its drug susceptibility to artesunate. As we are witnessing a rise of resistance to artemisinins, these results may help finding new pathways to successor drugs," said Lichtarge.

Explore further: Researchers identify genetic marker of resistance to key malaria drug

Related Stories

One route to malaria drug resistance found

July 24, 2014

Researchers have uncovered a way the malaria parasite becomes resistant to an investigational drug. The discovery, at Washington University School of Medicine in St. Louis, also is relevant for other infectious diseases including ...

Recommended for you

We've all got a blind spot, but it can be shrunk

August 31, 2015

You've probably never noticed, but the human eye includes an unavoidable blind spot. That's because the optic nerve that sends visual signals to the brain must pass through the retina, which creates a hole in that light-sensitive ...

Biologists identify mechanisms of embryonic wound repair

August 31, 2015

It's like something out of a science-fiction movie - time-lapse photography showing how wounds in embryos of fruit flies heal themselves. The images are not only real; they shed light on ways to improve wound recovery in ...

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

Research identifies protein that regulates body clock

August 26, 2015

New research into circadian rhythms by researchers at the University of Toronto Mississauga shows that the GRK2 protein plays a major role in regulating the body's internal clock and points the way to remedies for jet lag ...

Fertilization discovery: Do sperm wield tiny harpoons?

August 26, 2015

Could the sperm harpoon the egg to facilitate fertilization? That's the intriguing possibility raised by the University of Virginia School of Medicine's discovery that a protein within the head of the sperm forms spiky filaments, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.